A refined continuity correction for the negative binomial distribution and asymptotics of the median

In this paper, we prove a local limit theorem and a refined continuity correction for the negative binomial distribution. We present two applications of the results. First, we find the asymptotics of the median for a NegativeBinomial ( r , p ) random variable jittered by a Uniform ( 0 , 1 ) , which...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Metrika 2023-10, Vol.86 (7), p.827-849
1. Verfasser: Ouimet, Frédéric
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we prove a local limit theorem and a refined continuity correction for the negative binomial distribution. We present two applications of the results. First, we find the asymptotics of the median for a NegativeBinomial ( r , p ) random variable jittered by a Uniform ( 0 , 1 ) , which answers a problem left open in Coeurjolly and Trépanier (Metrika 83(7):837–851, 2020). This is used to construct a simple, robust and consistent estimator of the parameter  p , when r > 0 is known. The case where r is unknown is also briefly covered. Second, we find an upper bound on the Le Cam distance between negative binomial and normal experiments.
ISSN:0026-1335
1435-926X
DOI:10.1007/s00184-023-00897-2