A refined continuity correction for the negative binomial distribution and asymptotics of the median
In this paper, we prove a local limit theorem and a refined continuity correction for the negative binomial distribution. We present two applications of the results. First, we find the asymptotics of the median for a NegativeBinomial ( r , p ) random variable jittered by a Uniform ( 0 , 1 ) , which...
Gespeichert in:
Veröffentlicht in: | Metrika 2023-10, Vol.86 (7), p.827-849 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we prove a local limit theorem and a refined continuity correction for the negative binomial distribution. We present two applications of the results. First, we find the asymptotics of the median for a
NegativeBinomial
(
r
,
p
)
random variable jittered by a
Uniform
(
0
,
1
)
, which answers a problem left open in Coeurjolly and Trépanier (Metrika 83(7):837–851, 2020). This is used to construct a simple, robust and consistent estimator of the parameter
p
, when
r
>
0
is known. The case where
r
is unknown is also briefly covered. Second, we find an upper bound on the Le Cam distance between negative binomial and normal experiments. |
---|---|
ISSN: | 0026-1335 1435-926X |
DOI: | 10.1007/s00184-023-00897-2 |