What is the Real Need for Scene Text Removal? Exploring the Background Integrity and Erasure Exhaustivity Properties

As a crucial application in privacy protection, scene text removal (STR) has received amounts of attention in recent years. However, existing approaches coarsely erasing texts from images ignore two important properties: the background texture integrity (BI) and the text erasure exhaustivity (EE). T...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing 2023-01, Vol.PP, p.1-1
Hauptverfasser: Wang, Yuxin, Xie, Hongtao, Wang, Zixiao, Qu, Yadong, Zhang, Yongdong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE transactions on image processing
container_volume PP
creator Wang, Yuxin
Xie, Hongtao
Wang, Zixiao
Qu, Yadong
Zhang, Yongdong
description As a crucial application in privacy protection, scene text removal (STR) has received amounts of attention in recent years. However, existing approaches coarsely erasing texts from images ignore two important properties: the background texture integrity (BI) and the text erasure exhaustivity (EE). These two properties directly determine the erasure performance, and how to maintain them in a single network is the core problem for STR task. In this paper, we attribute the lack of BI and EE properties to the implicit erasure guidance and imbalanced multi-stage erasure respectively. To improve these two properties, we propose a new ProgrEssively Region-based scene Text eraser (PERT). There are three key contributions in our study. First, a novel explicit erasure guidance is proposed to enhance the BI property. Different from implicit erasure guidance modifying all the pixels in the entire image, our explicit one accurately performs stroke-level modification with only bounding-box level annotations. Second, a new balanced multi-stage erasure is constructed to improve the EE property. By balancing the learning difficulty and network structure among progressive stages, each stage takes an equal step towards the text-erased image to ensure the erasure exhaustivity. Third, we propose two new evaluation metrics called BI-metric and EE-metric, which makes up the shortcomings of current evaluation tools in analyzing BI and EE properties. Compared with previous methods, PERT outperforms them by a large margin in both BI-metric (↑6.13%) and EE-metric (↑1.9%), obtaining SOTA results with high speed (71 FPS) and at least 25% lower parameter complexity. Code will be available at https://github.com/wangyuxin87/PERT.
doi_str_mv 10.1109/TIP.2023.3290517
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2853018702</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10214243</ieee_id><sourcerecordid>2848843165</sourcerecordid><originalsourceid>FETCH-LOGICAL-c301t-4cf4e5e4d40318f81c32a074ad7181bd7c8e2e3944643e543c259f975953513</originalsourceid><addsrcrecordid>eNpdkU1PGzEQhi3Uio-UOweELPXSywaPP-L1CbUotJEQoBKJ48p4Z5Olm3WwvQj-fZ0mrVBP49E882rkh5ATYGMAZs7ns7sxZ1yMBTdMgd4jh2AkFIxJ_iG_mdKFBmkOyFGMT4yBVDDZJwdCKzURwhyS9LC0ibaRpiXSn2g7eoNY08YHeu-wRzrH15QHK_9iuws6fV13PrT94g__zbpfi-CHvqazPuEitOmN2txNg41DwIwv7RBT-7IZ3AW_xpBajJ_Ix8Z2EY93dUTur6bzyx_F9e332eXX68IJBqmQrpGoUNaSCSibEpzglmlpaw0lPNbalchRGCknUqCSwnFlGqOVUUKBGJEv29R18M8DxlSt2uiw62yPfogVL2VZSgETldHP_6FPfgh9vi1TKh9T6vzLI8K2lAs-xoBNtQ7tyoa3Cli18VFlH9XGR7XzkVfOdsHD4wrrfwt_BWTgdAu0iPguj4PkUojfCm-Nqw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2853018702</pqid></control><display><type>article</type><title>What is the Real Need for Scene Text Removal? Exploring the Background Integrity and Erasure Exhaustivity Properties</title><source>IEEE Electronic Library (IEL)</source><creator>Wang, Yuxin ; Xie, Hongtao ; Wang, Zixiao ; Qu, Yadong ; Zhang, Yongdong</creator><creatorcontrib>Wang, Yuxin ; Xie, Hongtao ; Wang, Zixiao ; Qu, Yadong ; Zhang, Yongdong</creatorcontrib><description>As a crucial application in privacy protection, scene text removal (STR) has received amounts of attention in recent years. However, existing approaches coarsely erasing texts from images ignore two important properties: the background texture integrity (BI) and the text erasure exhaustivity (EE). These two properties directly determine the erasure performance, and how to maintain them in a single network is the core problem for STR task. In this paper, we attribute the lack of BI and EE properties to the implicit erasure guidance and imbalanced multi-stage erasure respectively. To improve these two properties, we propose a new ProgrEssively Region-based scene Text eraser (PERT). There are three key contributions in our study. First, a novel explicit erasure guidance is proposed to enhance the BI property. Different from implicit erasure guidance modifying all the pixels in the entire image, our explicit one accurately performs stroke-level modification with only bounding-box level annotations. Second, a new balanced multi-stage erasure is constructed to improve the EE property. By balancing the learning difficulty and network structure among progressive stages, each stage takes an equal step towards the text-erased image to ensure the erasure exhaustivity. Third, we propose two new evaluation metrics called BI-metric and EE-metric, which makes up the shortcomings of current evaluation tools in analyzing BI and EE properties. Compared with previous methods, PERT outperforms them by a large margin in both BI-metric (↑6.13%) and EE-metric (↑1.9%), obtaining SOTA results with high speed (71 FPS) and at least 25% lower parameter complexity. Code will be available at https://github.com/wangyuxin87/PERT.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2023.3290517</identifier><identifier>PMID: 37556339</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Annotations ; background integrity ; balanced multi-stage erasure ; erasure exhaustivity ; explicit erasure guidance ; Image reconstruction ; Integrity ; Measurement ; Pipelines ; Privacy ; scene text removal ; Task analysis ; Training ; Visualization</subject><ispartof>IEEE transactions on image processing, 2023-01, Vol.PP, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c301t-4cf4e5e4d40318f81c32a074ad7181bd7c8e2e3944643e543c259f975953513</cites><orcidid>0000-0003-0265-5011 ; 0000-0002-1151-1792 ; 0000-0002-6249-5315 ; 0000-0002-0228-6220 ; 0000-0002-0009-5033</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10214243$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10214243$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37556339$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Yuxin</creatorcontrib><creatorcontrib>Xie, Hongtao</creatorcontrib><creatorcontrib>Wang, Zixiao</creatorcontrib><creatorcontrib>Qu, Yadong</creatorcontrib><creatorcontrib>Zhang, Yongdong</creatorcontrib><title>What is the Real Need for Scene Text Removal? Exploring the Background Integrity and Erasure Exhaustivity Properties</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>As a crucial application in privacy protection, scene text removal (STR) has received amounts of attention in recent years. However, existing approaches coarsely erasing texts from images ignore two important properties: the background texture integrity (BI) and the text erasure exhaustivity (EE). These two properties directly determine the erasure performance, and how to maintain them in a single network is the core problem for STR task. In this paper, we attribute the lack of BI and EE properties to the implicit erasure guidance and imbalanced multi-stage erasure respectively. To improve these two properties, we propose a new ProgrEssively Region-based scene Text eraser (PERT). There are three key contributions in our study. First, a novel explicit erasure guidance is proposed to enhance the BI property. Different from implicit erasure guidance modifying all the pixels in the entire image, our explicit one accurately performs stroke-level modification with only bounding-box level annotations. Second, a new balanced multi-stage erasure is constructed to improve the EE property. By balancing the learning difficulty and network structure among progressive stages, each stage takes an equal step towards the text-erased image to ensure the erasure exhaustivity. Third, we propose two new evaluation metrics called BI-metric and EE-metric, which makes up the shortcomings of current evaluation tools in analyzing BI and EE properties. Compared with previous methods, PERT outperforms them by a large margin in both BI-metric (↑6.13%) and EE-metric (↑1.9%), obtaining SOTA results with high speed (71 FPS) and at least 25% lower parameter complexity. Code will be available at https://github.com/wangyuxin87/PERT.</description><subject>Annotations</subject><subject>background integrity</subject><subject>balanced multi-stage erasure</subject><subject>erasure exhaustivity</subject><subject>explicit erasure guidance</subject><subject>Image reconstruction</subject><subject>Integrity</subject><subject>Measurement</subject><subject>Pipelines</subject><subject>Privacy</subject><subject>scene text removal</subject><subject>Task analysis</subject><subject>Training</subject><subject>Visualization</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkU1PGzEQhi3Uio-UOweELPXSywaPP-L1CbUotJEQoBKJ48p4Z5Olm3WwvQj-fZ0mrVBP49E882rkh5ATYGMAZs7ns7sxZ1yMBTdMgd4jh2AkFIxJ_iG_mdKFBmkOyFGMT4yBVDDZJwdCKzURwhyS9LC0ibaRpiXSn2g7eoNY08YHeu-wRzrH15QHK_9iuws6fV13PrT94g__zbpfi-CHvqazPuEitOmN2txNg41DwIwv7RBT-7IZ3AW_xpBajJ_Ix8Z2EY93dUTur6bzyx_F9e332eXX68IJBqmQrpGoUNaSCSibEpzglmlpaw0lPNbalchRGCknUqCSwnFlGqOVUUKBGJEv29R18M8DxlSt2uiw62yPfogVL2VZSgETldHP_6FPfgh9vi1TKh9T6vzLI8K2lAs-xoBNtQ7tyoa3Cli18VFlH9XGR7XzkVfOdsHD4wrrfwt_BWTgdAu0iPguj4PkUojfCm-Nqw</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Wang, Yuxin</creator><creator>Xie, Hongtao</creator><creator>Wang, Zixiao</creator><creator>Qu, Yadong</creator><creator>Zhang, Yongdong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0265-5011</orcidid><orcidid>https://orcid.org/0000-0002-1151-1792</orcidid><orcidid>https://orcid.org/0000-0002-6249-5315</orcidid><orcidid>https://orcid.org/0000-0002-0228-6220</orcidid><orcidid>https://orcid.org/0000-0002-0009-5033</orcidid></search><sort><creationdate>20230101</creationdate><title>What is the Real Need for Scene Text Removal? Exploring the Background Integrity and Erasure Exhaustivity Properties</title><author>Wang, Yuxin ; Xie, Hongtao ; Wang, Zixiao ; Qu, Yadong ; Zhang, Yongdong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c301t-4cf4e5e4d40318f81c32a074ad7181bd7c8e2e3944643e543c259f975953513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Annotations</topic><topic>background integrity</topic><topic>balanced multi-stage erasure</topic><topic>erasure exhaustivity</topic><topic>explicit erasure guidance</topic><topic>Image reconstruction</topic><topic>Integrity</topic><topic>Measurement</topic><topic>Pipelines</topic><topic>Privacy</topic><topic>scene text removal</topic><topic>Task analysis</topic><topic>Training</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yuxin</creatorcontrib><creatorcontrib>Xie, Hongtao</creatorcontrib><creatorcontrib>Wang, Zixiao</creatorcontrib><creatorcontrib>Qu, Yadong</creatorcontrib><creatorcontrib>Zhang, Yongdong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Yuxin</au><au>Xie, Hongtao</au><au>Wang, Zixiao</au><au>Qu, Yadong</au><au>Zhang, Yongdong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>What is the Real Need for Scene Text Removal? Exploring the Background Integrity and Erasure Exhaustivity Properties</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2023-01-01</date><risdate>2023</risdate><volume>PP</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>As a crucial application in privacy protection, scene text removal (STR) has received amounts of attention in recent years. However, existing approaches coarsely erasing texts from images ignore two important properties: the background texture integrity (BI) and the text erasure exhaustivity (EE). These two properties directly determine the erasure performance, and how to maintain them in a single network is the core problem for STR task. In this paper, we attribute the lack of BI and EE properties to the implicit erasure guidance and imbalanced multi-stage erasure respectively. To improve these two properties, we propose a new ProgrEssively Region-based scene Text eraser (PERT). There are three key contributions in our study. First, a novel explicit erasure guidance is proposed to enhance the BI property. Different from implicit erasure guidance modifying all the pixels in the entire image, our explicit one accurately performs stroke-level modification with only bounding-box level annotations. Second, a new balanced multi-stage erasure is constructed to improve the EE property. By balancing the learning difficulty and network structure among progressive stages, each stage takes an equal step towards the text-erased image to ensure the erasure exhaustivity. Third, we propose two new evaluation metrics called BI-metric and EE-metric, which makes up the shortcomings of current evaluation tools in analyzing BI and EE properties. Compared with previous methods, PERT outperforms them by a large margin in both BI-metric (↑6.13%) and EE-metric (↑1.9%), obtaining SOTA results with high speed (71 FPS) and at least 25% lower parameter complexity. Code will be available at https://github.com/wangyuxin87/PERT.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>37556339</pmid><doi>10.1109/TIP.2023.3290517</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-0265-5011</orcidid><orcidid>https://orcid.org/0000-0002-1151-1792</orcidid><orcidid>https://orcid.org/0000-0002-6249-5315</orcidid><orcidid>https://orcid.org/0000-0002-0228-6220</orcidid><orcidid>https://orcid.org/0000-0002-0009-5033</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1057-7149
ispartof IEEE transactions on image processing, 2023-01, Vol.PP, p.1-1
issn 1057-7149
1941-0042
language eng
recordid cdi_proquest_journals_2853018702
source IEEE Electronic Library (IEL)
subjects Annotations
background integrity
balanced multi-stage erasure
erasure exhaustivity
explicit erasure guidance
Image reconstruction
Integrity
Measurement
Pipelines
Privacy
scene text removal
Task analysis
Training
Visualization
title What is the Real Need for Scene Text Removal? Exploring the Background Integrity and Erasure Exhaustivity Properties
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T23%3A42%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=What%20is%20the%20Real%20Need%20for%20Scene%20Text%20Removal?%20Exploring%20the%20Background%20Integrity%20and%20Erasure%20Exhaustivity%20Properties&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Wang,%20Yuxin&rft.date=2023-01-01&rft.volume=PP&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2023.3290517&rft_dat=%3Cproquest_RIE%3E2848843165%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2853018702&rft_id=info:pmid/37556339&rft_ieee_id=10214243&rfr_iscdi=true