What is the Real Need for Scene Text Removal? Exploring the Background Integrity and Erasure Exhaustivity Properties

As a crucial application in privacy protection, scene text removal (STR) has received amounts of attention in recent years. However, existing approaches coarsely erasing texts from images ignore two important properties: the background texture integrity (BI) and the text erasure exhaustivity (EE). T...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing 2023-01, Vol.PP, p.1-1
Hauptverfasser: Wang, Yuxin, Xie, Hongtao, Wang, Zixiao, Qu, Yadong, Zhang, Yongdong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:As a crucial application in privacy protection, scene text removal (STR) has received amounts of attention in recent years. However, existing approaches coarsely erasing texts from images ignore two important properties: the background texture integrity (BI) and the text erasure exhaustivity (EE). These two properties directly determine the erasure performance, and how to maintain them in a single network is the core problem for STR task. In this paper, we attribute the lack of BI and EE properties to the implicit erasure guidance and imbalanced multi-stage erasure respectively. To improve these two properties, we propose a new ProgrEssively Region-based scene Text eraser (PERT). There are three key contributions in our study. First, a novel explicit erasure guidance is proposed to enhance the BI property. Different from implicit erasure guidance modifying all the pixels in the entire image, our explicit one accurately performs stroke-level modification with only bounding-box level annotations. Second, a new balanced multi-stage erasure is constructed to improve the EE property. By balancing the learning difficulty and network structure among progressive stages, each stage takes an equal step towards the text-erased image to ensure the erasure exhaustivity. Third, we propose two new evaluation metrics called BI-metric and EE-metric, which makes up the shortcomings of current evaluation tools in analyzing BI and EE properties. Compared with previous methods, PERT outperforms them by a large margin in both BI-metric (↑6.13%) and EE-metric (↑1.9%), obtaining SOTA results with high speed (71 FPS) and at least 25% lower parameter complexity. Code will be available at https://github.com/wangyuxin87/PERT.
ISSN:1057-7149
1941-0042
DOI:10.1109/TIP.2023.3290517