Tension Control of a McKibben Pneumatic Actuator Using a Dynamic Quantizer
A McKibben-type pneumatic actuator (MPA) is a soft actuator that generates tension by inflating a rubber tube with compressed air. Electropneumatic regulators are typically employed to regulate air pressure in MPAs. However, they are normally large in size and expensive, which are significant obstac...
Gespeichert in:
Veröffentlicht in: | Journal of robotics and mechatronics 2023-08, Vol.35 (4), p.1038-1046 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A McKibben-type pneumatic actuator (MPA) is a soft actuator that generates tension by inflating a rubber tube with compressed air. Electropneumatic regulators are typically employed to regulate air pressure in MPAs. However, they are normally large in size and expensive, which are significant obstacles to the autonomous decentralized control of many MPAs in achieving various robot motions. In this study, the exerted tension of the MPA was controlled using a small solenoid valve that could be opened and closed instead of an electropneumatic regulator. To achieve this tension control, we proposed the use of a dynamic quantizer that converts continuous pressure values into discrete pressure values and controls the solenoid valve based on the discretized pressure values. The proposed method was applied to feedforward and feedback control of the exerted MPA tension under isometric conditions. Experiments on an actual device with a small solenoid valve demonstrated the effectiveness of the proposed method based on a dynamic quantizer. |
---|---|
ISSN: | 0915-3942 1883-8049 |
DOI: | 10.20965/jrm.2023.p1038 |