Optimal regularity of isoperimetric sets with Hölder densities

We establish a regularity result for optimal sets of the isoperimetric problem with double density under mild ( α -)Hölder regularity assumptions on the density functions. Our main Theorem improves some previous results and allows to reach in any dimension the regularity class  C 1 , α 2 - α . This...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Calculus of variations and partial differential equations 2023-11, Vol.62 (8), Article 214
Hauptverfasser: Beck, Lisa, Cinti, Eleonora, Seis, Christian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We establish a regularity result for optimal sets of the isoperimetric problem with double density under mild ( α -)Hölder regularity assumptions on the density functions. Our main Theorem improves some previous results and allows to reach in any dimension the regularity class  C 1 , α 2 - α . This class is indeed the optimal one for local minimizers of variational functionals with an integrand that depends α -Hölder continuous on the minimizer itself, and as such can (the boundary of) the isoperimetric set be locally written (with additional constraint).
ISSN:0944-2669
1432-0835
DOI:10.1007/s00526-023-02542-2