Outlier detection based on extreme value theory and applications

Whether an extreme observation is an outlier or not depends strongly on the corresponding tail behavior of the underlying distribution. We develop an automatic, data‐driven method rooted in the mathematical theory of extremes to identify observations that deviate from the intermediate and central ch...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scandinavian journal of statistics 2023-09, Vol.50 (3), p.1466-1502
Hauptverfasser: Bhattacharya, Shrijita, Kamper, Francois, Beirlant, Jan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Whether an extreme observation is an outlier or not depends strongly on the corresponding tail behavior of the underlying distribution. We develop an automatic, data‐driven method rooted in the mathematical theory of extremes to identify observations that deviate from the intermediate and central characteristics. The proposed algorithm is an extension of a method previously proposed in the literature for the specific case of heavy tailed Pareto‐type distributions to all max‐domains of attraction. We propose some applications such as a tail‐adjusted boxplot which yields a more accurate representation of possible outliers, and the identification of outliers in a multivariate context through an analysis of associated random variables such as local outlier factors. Several examples and simulation results illustrate the finite sample behavior of the algorithm and its applications.
ISSN:0303-6898
1467-9469
DOI:10.1111/sjos.12665