Consistent Bayesian information criterion based on a mixture prior for possibly high‐dimensional multivariate linear regression models

In the problem of selecting variables in a multivariate linear regression model, we derive new Bayesian information criteria based on a prior mixing a smooth distribution and a delta distribution. Each of them can be interpreted as a fusion of the Akaike information criterion (AIC) and the Bayesian...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scandinavian journal of statistics 2023-09, Vol.50 (3), p.1022-1047
Hauptverfasser: Kono, Haruki, Kubokawa, Tatsuya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the problem of selecting variables in a multivariate linear regression model, we derive new Bayesian information criteria based on a prior mixing a smooth distribution and a delta distribution. Each of them can be interpreted as a fusion of the Akaike information criterion (AIC) and the Bayesian information criterion (BIC). Inheriting their asymptotic properties, our information criteria are consistent in variable selection in both the large‐sample and the high‐dimensional asymptotic frameworks. In numerical simulations, variable selection methods based on our information criteria choose the true set of variables with high probability in most cases.
ISSN:0303-6898
1467-9469
DOI:10.1111/sjos.12617