Weak and strong stability of the inverse Sturm‐Liouville problem

In this work, we study the stability of the inverse Sturm‐Liouville problem with the Neumann boundary condition at the left ending point and the Robin boundary condition at the right ending point. We estimate the difference of two potentials in the sense of weakness and L2$$ {L}^2 $$‐norm, in terms...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical methods in the applied sciences 2023-09, Vol.46 (14), p.15684-15705
Hauptverfasser: Guo, Yan, Ma, Li‐Jie, Xu, Xiao‐Chuan, An, Qi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this work, we study the stability of the inverse Sturm‐Liouville problem with the Neumann boundary condition at the left ending point and the Robin boundary condition at the right ending point. We estimate the difference of two potentials in the sense of weakness and L2$$ {L}^2 $$‐norm, in terms of the difference of two spectra. Since the Neumann boundary condition may become the Robin boundary condition after small perturbation of the spectra, our stability results also include this situation.
ISSN:0170-4214
1099-1476
DOI:10.1002/mma.9421