Boundary value problems for a second‐order elliptic partial differential equation system in Euclidean space
Let Ω⊂ℝm$$ \Omega \subset {\mathrm{\mathbb{R}}}^m $$ be a bounded regular domain, let ∂x_$$ {\partial}_{\underset{\_}{x}} $$ be the standard Dirac operator in ℝm$$ {\mathrm{\mathbb{R}}}^m $$, and let ℝ0,m$$ {\mathrm{\mathbb{R}}}_{0,m} $$ be the Clifford algebra constructed over the quadratic space ℝ...
Gespeichert in:
Veröffentlicht in: | Mathematical methods in the applied sciences 2023-09, Vol.46 (14), p.15784-15798 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
Ω⊂ℝm$$ \Omega \subset {\mathrm{\mathbb{R}}}^m $$ be a bounded regular domain, let
∂x_$$ {\partial}_{\underset{\_}{x}} $$ be the standard Dirac operator in
ℝm$$ {\mathrm{\mathbb{R}}}^m $$, and let
ℝ0,m$$ {\mathrm{\mathbb{R}}}_{0,m} $$ be the Clifford algebra constructed over the quadratic space
ℝ0,m$$ {\mathrm{\mathbb{R}}}^{0,m} $$. For
k∈{1,…,m}$$ k\in \left\{1,\dots, m\right\} $$ fixed,
ℝ0,m(k)$$ {\mathrm{\mathbb{R}}}_{0,m}^{(k)} $$ denotes the space of
k$$ k $$‐vectors in
ℝ0,m$$ {\mathrm{\mathbb{R}}}_{0,m} $$. In the framework of Clifford analysis, we consider two boundary value problems for a second‐order elliptic system of partial differential equations of the form
∂x_Fk∂x_=fk$$ {\partial}_{\underset{\_}{x}}{F}_k{\partial}_{\underset{\_}{x}}={f}_k $$ in
Ω$$ \Omega $$, where
fk$$ {f}_k $$ is a smooth
k$$ k $$‐vector valued function. The boundary conditions of the problems contain the inner and outer products of the
k$$ k $$‐vector solution
Fk$$ {F}_k $$ with both the Dirac operator and the normal vector to
∂Ω$$ \mathrm{\partial \Omega } $$, ensuring the well‐posedness for the problems. Investigation of the spectral properties of the sandwich operator
∂x_(.)∂x_$$ {\partial}_{\underset{\_}{x}}(.){\partial}_{\underset{\_}{x}} $$ is considered by using the Fredholm theory. Finally, it is shown that satisfactory problem‐solving properties, in general, fail when we replace the standard Dirac operator by those, obtained via unusual orthogonal bases of
ℝm$$ {\mathrm{\mathbb{R}}}^m $$. |
---|---|
ISSN: | 0170-4214 1099-1476 |
DOI: | 10.1002/mma.9426 |