Quantum information entropies for solitonic systems
Particle with position-dependent mass is a useful concept in the context of semiconductor physics. We study a particle with the solitonic mass distribution in two different forms of potential: the quartic and the symmetric potential. We estimate the Shannon entropy and Fisher information associated...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-08 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Particle with position-dependent mass is a useful concept in the context of semiconductor physics. We study a particle with the solitonic mass distribution in two different forms of potential: the quartic and the symmetric potential. We estimate the Shannon entropy and Fisher information associated with the ground state of particle in these two scenarioes by obtaining the wave-function from Zhu-Kroemer equation. The ground state of the particle in each case satisfies the Bialynicki-Birula-Mycielski inequality. Upon comparing all four models under consideration, we have observed that the Shannon entropy is greater for the solitonic mass distribution when it is subjected to a quartic potential. |
---|---|
ISSN: | 2331-8422 |