Quantum information entropies for solitonic systems

Particle with position-dependent mass is a useful concept in the context of semiconductor physics. We study a particle with the solitonic mass distribution in two different forms of potential: the quartic and the symmetric potential. We estimate the Shannon entropy and Fisher information associated...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-08
Hauptverfasser: Radhakrishnan, Ramkumar, Ughradar, Mariyah, Ojha, Vikash Kumar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Particle with position-dependent mass is a useful concept in the context of semiconductor physics. We study a particle with the solitonic mass distribution in two different forms of potential: the quartic and the symmetric potential. We estimate the Shannon entropy and Fisher information associated with the ground state of particle in these two scenarioes by obtaining the wave-function from Zhu-Kroemer equation. The ground state of the particle in each case satisfies the Bialynicki-Birula-Mycielski inequality. Upon comparing all four models under consideration, we have observed that the Shannon entropy is greater for the solitonic mass distribution when it is subjected to a quartic potential.
ISSN:2331-8422