VBD-MT Chinese-Vietnamese Translation Systems for VLSP 2022

We present our systems participated in the VLSP 2022 machine translation shared task. In the shared task this year, we participated in both translation tasks, i.e., Chinese-Vietnamese and Vietnamese-Chinese translations. We build our systems based on the neural-based Transformer model with the power...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-08
Hauptverfasser: Hai Long Trieu, Bui, Song Kiet, Tran, Tan Minh, Van Khanh Tran, Hai An Nguyen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present our systems participated in the VLSP 2022 machine translation shared task. In the shared task this year, we participated in both translation tasks, i.e., Chinese-Vietnamese and Vietnamese-Chinese translations. We build our systems based on the neural-based Transformer model with the powerful multilingual denoising pre-trained model mBART. The systems are enhanced by a sampling method for backtranslation, which leverage large scale available monolingual data. Additionally, several other methods are applied to improve the translation quality including ensembling and postprocessing. We achieve 38.9 BLEU on ChineseVietnamese and 38.0 BLEU on VietnameseChinese on the public test sets, which outperform several strong baselines.
ISSN:2331-8422