Dual Multi-scale Dehazing Network
Single-image haze removal is a challenging ill-posed problem. Recently, methods based on training on synthetic data have achieved good dehazing results. However, we note that these methods can be further improved. A novel deep learning-based method is proposed to obtain a better-dehazed result for s...
Gespeichert in:
Veröffentlicht in: | IEEE access 2023-01, Vol.11, p.1-1 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Single-image haze removal is a challenging ill-posed problem. Recently, methods based on training on synthetic data have achieved good dehazing results. However, we note that these methods can be further improved. A novel deep learning-based method is proposed to obtain a better-dehazed result for single-image dehazing in this paper. Specially, we propose a dual multi-scale network to learn the dehazing knowledge from synthetical data. The coarse multi-scale network is designed to capture a large variety of objects, and then fine multi-scale blocks are designed to capture a small variety of objects at each scale. To show the effectiveness of the proposed method, we perform experiments on a synthetic dataset and real hazy images. Extensive experimental results show that the proposed method outperforms the state-of-the-art methods. |
---|---|
ISSN: | 2169-3536 2169-3536 |
DOI: | 10.1109/ACCESS.2023.3296592 |