Dual Multi-scale Dehazing Network

Single-image haze removal is a challenging ill-posed problem. Recently, methods based on training on synthetic data have achieved good dehazing results. However, we note that these methods can be further improved. A novel deep learning-based method is proposed to obtain a better-dehazed result for s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2023-01, Vol.11, p.1-1
Hauptverfasser: Zhang, Shengdong, Zhang, Xiaoqin, Shen, Linlin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Single-image haze removal is a challenging ill-posed problem. Recently, methods based on training on synthetic data have achieved good dehazing results. However, we note that these methods can be further improved. A novel deep learning-based method is proposed to obtain a better-dehazed result for single-image dehazing in this paper. Specially, we propose a dual multi-scale network to learn the dehazing knowledge from synthetical data. The coarse multi-scale network is designed to capture a large variety of objects, and then fine multi-scale blocks are designed to capture a small variety of objects at each scale. To show the effectiveness of the proposed method, we perform experiments on a synthetic dataset and real hazy images. Extensive experimental results show that the proposed method outperforms the state-of-the-art methods.
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2023.3296592