A Human Activity Recognition Method Based on Lightweight Feature Extraction Combined With Pruned and Quantized CNN for Wearable Device

Human Activity Recognition (HAR) is becoming an essential part of human life care. Existing HAR methods are usually developed using a two-level approach, wherein a first-level Machine Learning (ML) classifier is employed to distinguish the static and dynamic activities, followed by a second-level cl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on consumer electronics 2023-08, Vol.69 (3), p.657-670
Hauptverfasser: Yi, Myung-Kyu, Lee, Wai-Kong, Hwang, Seong Oun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 670
container_issue 3
container_start_page 657
container_title IEEE transactions on consumer electronics
container_volume 69
creator Yi, Myung-Kyu
Lee, Wai-Kong
Hwang, Seong Oun
description Human Activity Recognition (HAR) is becoming an essential part of human life care. Existing HAR methods are usually developed using a two-level approach, wherein a first-level Machine Learning (ML) classifier is employed to distinguish the static and dynamic activities, followed by a second-level classifier to identify the specific activity. These approaches are not suitable for wearable devices, due to the high computational and memory consumption. Our rigorous analysis of various HAR datasets opens up a new possibility that static or dynamic activities can be discriminated against through a simple statistical technique. Therefore, we propose to utilize a statistical feature extraction technique to replace the first-level ML classifier, thus achieving more lightweight computation. Next, we employ Random Forest (RF) and Convolutional Neural Networks (CNN) to classify the specific activities, achieving higher accuracy compared to the state-of-the-art results. We further reduce the computation and memory consumption of the above combined approach by applying pruning and quantizing techniques to CNN (PQ-CNN). Experimental results show the proposed lightweight HAR method achieved an F1 score of 0.9417 and 0.9438 for unbalanced and balanced datasets, respectively. On top of lightweight and accuracy, the proposed HAR method is practical for wearable devices by using a single accelerometer.
doi_str_mv 10.1109/TCE.2023.3266506
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2851333884</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10100934</ieee_id><sourcerecordid>2851333884</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-990bc9753c9f271430819da878de44a5f799abb38c8d815aed4f4f7d8d68bfac3</originalsourceid><addsrcrecordid>eNpNkMlOwzAQhi0EEmW5c-BgiXOKtyT2sYSySKUsKuoxcuwJNaIxOA5QHoDnJqUcuMzML30zI30IHVEypJSo01kxHjLC-JCzLEtJtoUGNE1lIijLt9GAECUTTjK-i_ba9pkQKlImB-h7hK-6pW7wyET37uIKP4DxT42Lzjf4BuLCW3ymW7C4zxP3tIgfsK74AnTsAuDxZwza_OKFX1au6dG5iwt8F7r1rBuL7zvdRPfVp2I6xbUPeA466OoF8Dm8OwMHaKfWLy0c_vV99HgxnhVXyeT28roYTRLDFIuJUqQyKk-5UTXLqeBEUmW1zKUFIXRa50rpquLSSCtpqsGKWtS5lTaTVa0N30cnm7uvwb910Mby2Xeh6V-WTKaUcy6l6CmyoUzwbRugLl-DW-qwKikp17bL3na5tl3-2e5XjjcrDgD-4bQXzwX_AQv9fEQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2851333884</pqid></control><display><type>article</type><title>A Human Activity Recognition Method Based on Lightweight Feature Extraction Combined With Pruned and Quantized CNN for Wearable Device</title><source>IEEE Electronic Library (IEL)</source><creator>Yi, Myung-Kyu ; Lee, Wai-Kong ; Hwang, Seong Oun</creator><creatorcontrib>Yi, Myung-Kyu ; Lee, Wai-Kong ; Hwang, Seong Oun</creatorcontrib><description>Human Activity Recognition (HAR) is becoming an essential part of human life care. Existing HAR methods are usually developed using a two-level approach, wherein a first-level Machine Learning (ML) classifier is employed to distinguish the static and dynamic activities, followed by a second-level classifier to identify the specific activity. These approaches are not suitable for wearable devices, due to the high computational and memory consumption. Our rigorous analysis of various HAR datasets opens up a new possibility that static or dynamic activities can be discriminated against through a simple statistical technique. Therefore, we propose to utilize a statistical feature extraction technique to replace the first-level ML classifier, thus achieving more lightweight computation. Next, we employ Random Forest (RF) and Convolutional Neural Networks (CNN) to classify the specific activities, achieving higher accuracy compared to the state-of-the-art results. We further reduce the computation and memory consumption of the above combined approach by applying pruning and quantizing techniques to CNN (PQ-CNN). Experimental results show the proposed lightweight HAR method achieved an F1 score of 0.9417 and 0.9438 for unbalanced and balanced datasets, respectively. On top of lightweight and accuracy, the proposed HAR method is practical for wearable devices by using a single accelerometer.</description><identifier>ISSN: 0098-3063</identifier><identifier>EISSN: 1558-4127</identifier><identifier>DOI: 10.1109/TCE.2023.3266506</identifier><identifier>CODEN: ITCEDA</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accelerometers ; Accuracy ; Artificial neural networks ; Biomedical monitoring ; Classifiers ; Computation ; Consumption ; convolutional neural network ; Convolutional neural networks ; Datasets ; Deep learning ; Feature extraction ; Human activity recognition ; Lightweight ; Machine learning ; Support vector machines ; Wearable computers ; Wearable sensors ; Wearable technology</subject><ispartof>IEEE transactions on consumer electronics, 2023-08, Vol.69 (3), p.657-670</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-990bc9753c9f271430819da878de44a5f799abb38c8d815aed4f4f7d8d68bfac3</citedby><cites>FETCH-LOGICAL-c292t-990bc9753c9f271430819da878de44a5f799abb38c8d815aed4f4f7d8d68bfac3</cites><orcidid>0000-0003-4659-8979 ; 0000-0002-2360-4523 ; 0000-0003-4240-6255</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10100934$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10100934$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yi, Myung-Kyu</creatorcontrib><creatorcontrib>Lee, Wai-Kong</creatorcontrib><creatorcontrib>Hwang, Seong Oun</creatorcontrib><title>A Human Activity Recognition Method Based on Lightweight Feature Extraction Combined With Pruned and Quantized CNN for Wearable Device</title><title>IEEE transactions on consumer electronics</title><addtitle>T-CE</addtitle><description>Human Activity Recognition (HAR) is becoming an essential part of human life care. Existing HAR methods are usually developed using a two-level approach, wherein a first-level Machine Learning (ML) classifier is employed to distinguish the static and dynamic activities, followed by a second-level classifier to identify the specific activity. These approaches are not suitable for wearable devices, due to the high computational and memory consumption. Our rigorous analysis of various HAR datasets opens up a new possibility that static or dynamic activities can be discriminated against through a simple statistical technique. Therefore, we propose to utilize a statistical feature extraction technique to replace the first-level ML classifier, thus achieving more lightweight computation. Next, we employ Random Forest (RF) and Convolutional Neural Networks (CNN) to classify the specific activities, achieving higher accuracy compared to the state-of-the-art results. We further reduce the computation and memory consumption of the above combined approach by applying pruning and quantizing techniques to CNN (PQ-CNN). Experimental results show the proposed lightweight HAR method achieved an F1 score of 0.9417 and 0.9438 for unbalanced and balanced datasets, respectively. On top of lightweight and accuracy, the proposed HAR method is practical for wearable devices by using a single accelerometer.</description><subject>Accelerometers</subject><subject>Accuracy</subject><subject>Artificial neural networks</subject><subject>Biomedical monitoring</subject><subject>Classifiers</subject><subject>Computation</subject><subject>Consumption</subject><subject>convolutional neural network</subject><subject>Convolutional neural networks</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Feature extraction</subject><subject>Human activity recognition</subject><subject>Lightweight</subject><subject>Machine learning</subject><subject>Support vector machines</subject><subject>Wearable computers</subject><subject>Wearable sensors</subject><subject>Wearable technology</subject><issn>0098-3063</issn><issn>1558-4127</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkMlOwzAQhi0EEmW5c-BgiXOKtyT2sYSySKUsKuoxcuwJNaIxOA5QHoDnJqUcuMzML30zI30IHVEypJSo01kxHjLC-JCzLEtJtoUGNE1lIijLt9GAECUTTjK-i_ba9pkQKlImB-h7hK-6pW7wyET37uIKP4DxT42Lzjf4BuLCW3ymW7C4zxP3tIgfsK74AnTsAuDxZwza_OKFX1au6dG5iwt8F7r1rBuL7zvdRPfVp2I6xbUPeA466OoF8Dm8OwMHaKfWLy0c_vV99HgxnhVXyeT28roYTRLDFIuJUqQyKk-5UTXLqeBEUmW1zKUFIXRa50rpquLSSCtpqsGKWtS5lTaTVa0N30cnm7uvwb910Mby2Xeh6V-WTKaUcy6l6CmyoUzwbRugLl-DW-qwKikp17bL3na5tl3-2e5XjjcrDgD-4bQXzwX_AQv9fEQ</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Yi, Myung-Kyu</creator><creator>Lee, Wai-Kong</creator><creator>Hwang, Seong Oun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4659-8979</orcidid><orcidid>https://orcid.org/0000-0002-2360-4523</orcidid><orcidid>https://orcid.org/0000-0003-4240-6255</orcidid></search><sort><creationdate>20230801</creationdate><title>A Human Activity Recognition Method Based on Lightweight Feature Extraction Combined With Pruned and Quantized CNN for Wearable Device</title><author>Yi, Myung-Kyu ; Lee, Wai-Kong ; Hwang, Seong Oun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-990bc9753c9f271430819da878de44a5f799abb38c8d815aed4f4f7d8d68bfac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accelerometers</topic><topic>Accuracy</topic><topic>Artificial neural networks</topic><topic>Biomedical monitoring</topic><topic>Classifiers</topic><topic>Computation</topic><topic>Consumption</topic><topic>convolutional neural network</topic><topic>Convolutional neural networks</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Feature extraction</topic><topic>Human activity recognition</topic><topic>Lightweight</topic><topic>Machine learning</topic><topic>Support vector machines</topic><topic>Wearable computers</topic><topic>Wearable sensors</topic><topic>Wearable technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yi, Myung-Kyu</creatorcontrib><creatorcontrib>Lee, Wai-Kong</creatorcontrib><creatorcontrib>Hwang, Seong Oun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on consumer electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yi, Myung-Kyu</au><au>Lee, Wai-Kong</au><au>Hwang, Seong Oun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Human Activity Recognition Method Based on Lightweight Feature Extraction Combined With Pruned and Quantized CNN for Wearable Device</atitle><jtitle>IEEE transactions on consumer electronics</jtitle><stitle>T-CE</stitle><date>2023-08-01</date><risdate>2023</risdate><volume>69</volume><issue>3</issue><spage>657</spage><epage>670</epage><pages>657-670</pages><issn>0098-3063</issn><eissn>1558-4127</eissn><coden>ITCEDA</coden><abstract>Human Activity Recognition (HAR) is becoming an essential part of human life care. Existing HAR methods are usually developed using a two-level approach, wherein a first-level Machine Learning (ML) classifier is employed to distinguish the static and dynamic activities, followed by a second-level classifier to identify the specific activity. These approaches are not suitable for wearable devices, due to the high computational and memory consumption. Our rigorous analysis of various HAR datasets opens up a new possibility that static or dynamic activities can be discriminated against through a simple statistical technique. Therefore, we propose to utilize a statistical feature extraction technique to replace the first-level ML classifier, thus achieving more lightweight computation. Next, we employ Random Forest (RF) and Convolutional Neural Networks (CNN) to classify the specific activities, achieving higher accuracy compared to the state-of-the-art results. We further reduce the computation and memory consumption of the above combined approach by applying pruning and quantizing techniques to CNN (PQ-CNN). Experimental results show the proposed lightweight HAR method achieved an F1 score of 0.9417 and 0.9438 for unbalanced and balanced datasets, respectively. On top of lightweight and accuracy, the proposed HAR method is practical for wearable devices by using a single accelerometer.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCE.2023.3266506</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-4659-8979</orcidid><orcidid>https://orcid.org/0000-0002-2360-4523</orcidid><orcidid>https://orcid.org/0000-0003-4240-6255</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0098-3063
ispartof IEEE transactions on consumer electronics, 2023-08, Vol.69 (3), p.657-670
issn 0098-3063
1558-4127
language eng
recordid cdi_proquest_journals_2851333884
source IEEE Electronic Library (IEL)
subjects Accelerometers
Accuracy
Artificial neural networks
Biomedical monitoring
Classifiers
Computation
Consumption
convolutional neural network
Convolutional neural networks
Datasets
Deep learning
Feature extraction
Human activity recognition
Lightweight
Machine learning
Support vector machines
Wearable computers
Wearable sensors
Wearable technology
title A Human Activity Recognition Method Based on Lightweight Feature Extraction Combined With Pruned and Quantized CNN for Wearable Device
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T19%3A42%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Human%20Activity%20Recognition%20Method%20Based%20on%20Lightweight%20Feature%20Extraction%20Combined%20With%20Pruned%20and%20Quantized%20CNN%20for%20Wearable%20Device&rft.jtitle=IEEE%20transactions%20on%20consumer%20electronics&rft.au=Yi,%20Myung-Kyu&rft.date=2023-08-01&rft.volume=69&rft.issue=3&rft.spage=657&rft.epage=670&rft.pages=657-670&rft.issn=0098-3063&rft.eissn=1558-4127&rft.coden=ITCEDA&rft_id=info:doi/10.1109/TCE.2023.3266506&rft_dat=%3Cproquest_RIE%3E2851333884%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2851333884&rft_id=info:pmid/&rft_ieee_id=10100934&rfr_iscdi=true