A Human Activity Recognition Method Based on Lightweight Feature Extraction Combined With Pruned and Quantized CNN for Wearable Device

Human Activity Recognition (HAR) is becoming an essential part of human life care. Existing HAR methods are usually developed using a two-level approach, wherein a first-level Machine Learning (ML) classifier is employed to distinguish the static and dynamic activities, followed by a second-level cl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on consumer electronics 2023-08, Vol.69 (3), p.657-670
Hauptverfasser: Yi, Myung-Kyu, Lee, Wai-Kong, Hwang, Seong Oun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Human Activity Recognition (HAR) is becoming an essential part of human life care. Existing HAR methods are usually developed using a two-level approach, wherein a first-level Machine Learning (ML) classifier is employed to distinguish the static and dynamic activities, followed by a second-level classifier to identify the specific activity. These approaches are not suitable for wearable devices, due to the high computational and memory consumption. Our rigorous analysis of various HAR datasets opens up a new possibility that static or dynamic activities can be discriminated against through a simple statistical technique. Therefore, we propose to utilize a statistical feature extraction technique to replace the first-level ML classifier, thus achieving more lightweight computation. Next, we employ Random Forest (RF) and Convolutional Neural Networks (CNN) to classify the specific activities, achieving higher accuracy compared to the state-of-the-art results. We further reduce the computation and memory consumption of the above combined approach by applying pruning and quantizing techniques to CNN (PQ-CNN). Experimental results show the proposed lightweight HAR method achieved an F1 score of 0.9417 and 0.9438 for unbalanced and balanced datasets, respectively. On top of lightweight and accuracy, the proposed HAR method is practical for wearable devices by using a single accelerometer.
ISSN:0098-3063
1558-4127
DOI:10.1109/TCE.2023.3266506