Charge–Sign Dependence of Cosmic Ray Modulation from the PAMELA Experiment
Machine learning is used to obtain ratios of 100–500-MeV positron-to-electron and electron-to-proton fluxes with rigidities of 1–1.7-GV from the PAMELA experimental data for 2006–2016 in order to study the solar modulation of cosmic-ray fluxes with energies below 1 GeV. Observed features of the data...
Gespeichert in:
Veröffentlicht in: | Bulletin of the Russian Academy of Sciences. Physics 2023-07, Vol.87 (7), p.962-964 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Machine learning is used to obtain ratios of 100–500-MeV positron-to-electron and electron-to-proton fluxes with rigidities of 1–1.7-GV from the PAMELA experimental data for 2006–2016 in order to study the solar modulation of cosmic-ray fluxes with energies below 1 GeV. Observed features of the data and a comparison to AMS-02 experimental results allow study of the charge–sign dependence of modulation around the sunspot minimum in 2009 and the maximum in 2015. |
---|---|
ISSN: | 1062-8738 1934-9432 |
DOI: | 10.3103/S1062873823702544 |