Existence of solutions for a nonlocal elliptic system with critical and subcritical exponential growth
In this paper, the existence of nontrivial solutions to the following nonlocal elliptic system: −Δu=1|x|μ∗G(v)g(v),v>0inΩ,−Δv=1|x|μ∗F(u)f(u),u>0inΩ,u=0,v=0on∂Ω$$ \left\{\begin{array}{l}-\Delta u=\left[\frac{1}{{\left|x\right|}^{\mu }}\ast G(v)\right]g(v),v>0\kern0.5em \mathrm{in}\kern0.5em...
Gespeichert in:
Veröffentlicht in: | Mathematical methods in the applied sciences 2023-09, Vol.46 (13), p.14441-14456 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, the existence of nontrivial solutions to the following nonlocal elliptic system:
−Δu=1|x|μ∗G(v)g(v),v>0inΩ,−Δv=1|x|μ∗F(u)f(u),u>0inΩ,u=0,v=0on∂Ω$$ \left\{\begin{array}{l}-\Delta u=\left[\frac{1}{{\left|x\right|}^{\mu }}\ast G(v)\right]g(v),v>0\kern0.5em \mathrm{in}\kern0.5em \Omega, \\ {}-\Delta v=\left[\frac{1}{{\left|x\right|}^{\mu }}\ast F(u)\right]f(u),u>0\kern0.5em \mathrm{in}\kern0.5em \Omega, \\ {}u=0,v=0\kern0.5em \mathrm{on}\kern0.5em \mathrm{\partial \Omega}\end{array}\right. $$
is studied by variational method, where
Ω$$ \Omega $$ is a bounded open subset of
ℝ2$$ {\mathrm{\mathbb{R}}}^2 $$ with smooth boundary
∂Ω,0 |
---|---|
ISSN: | 0170-4214 1099-1476 |
DOI: | 10.1002/mma.9328 |