Subharmonic Solutions of Weakly Coupled Hamiltonian Systems

We prove the existence of an arbitrarily large number of subharmonic solutions for a class of weakly coupled Hamiltonian systems which includes the case when the Hamiltonian function is periodic in all of its variables and its critical points are non-degenerate. Our results are obtained through a ca...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of dynamics and differential equations 2023-09, Vol.35 (3), p.2337-2353
Hauptverfasser: Fonda, Alessandro, Toader, Rodica
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove the existence of an arbitrarily large number of subharmonic solutions for a class of weakly coupled Hamiltonian systems which includes the case when the Hamiltonian function is periodic in all of its variables and its critical points are non-degenerate. Our results are obtained through a careful analysis of the dynamics of the planar components, combined with an application of a generalized version of the Poincaré–Birkhoff Theorem.
ISSN:1040-7294
1572-9222
DOI:10.1007/s10884-021-10106-1