Global gradient regularity and a Hopf lemma for quasilinear operators of mixed local-nonlocal type
We address some regularity issues for mixed local-nonlocal quasilinear operators modeled upon the sum of a \(p\)-Laplacian and of a fractional \((s, q)\)-Laplacian. Under suitable assumptions on the right-hand sides and the outer data, we show that weak solutions of the Dirichlet problem are \(C^{1,...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-08 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We address some regularity issues for mixed local-nonlocal quasilinear operators modeled upon the sum of a \(p\)-Laplacian and of a fractional \((s, q)\)-Laplacian. Under suitable assumptions on the right-hand sides and the outer data, we show that weak solutions of the Dirichlet problem are \(C^{1, \theta}\)-regular up to the boundary. In addition, we establish a Hopf type lemma for positive supersolutions. Both results hold assuming the boundary of the reference domain to be merely of class \(C^{1, \alpha}\), while for the regularity result we also require that \(p > s q\). |
---|---|
ISSN: | 2331-8422 |