Global gradient regularity and a Hopf lemma for quasilinear operators of mixed local-nonlocal type

We address some regularity issues for mixed local-nonlocal quasilinear operators modeled upon the sum of a \(p\)-Laplacian and of a fractional \((s, q)\)-Laplacian. Under suitable assumptions on the right-hand sides and the outer data, we show that weak solutions of the Dirichlet problem are \(C^{1,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-08
Hauptverfasser: Antonini, Carlo Alberto, Cozzi, Matteo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We address some regularity issues for mixed local-nonlocal quasilinear operators modeled upon the sum of a \(p\)-Laplacian and of a fractional \((s, q)\)-Laplacian. Under suitable assumptions on the right-hand sides and the outer data, we show that weak solutions of the Dirichlet problem are \(C^{1, \theta}\)-regular up to the boundary. In addition, we establish a Hopf type lemma for positive supersolutions. Both results hold assuming the boundary of the reference domain to be merely of class \(C^{1, \alpha}\), while for the regularity result we also require that \(p > s q\).
ISSN:2331-8422