Supramolecular Control of the Oxidative Addition as a Way To Improve the Catalytic Efficiency of Pincer‐Rhodium (I) Complexes
1H NMR studies using a cationic complex with a pyridine‐di‐imidazolylidene pincer ligand of formula [Rh(CNC)(CO)]+ revealed that this compound showed high binding affinity with coronene in CH2Cl2. The interaction between coronene and the planar RhI complex is established by means of π‐stacking inter...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie 2023-08, Vol.135 (34), p.n/a |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | 1H NMR studies using a cationic complex with a pyridine‐di‐imidazolylidene pincer ligand of formula [Rh(CNC)(CO)]+ revealed that this compound showed high binding affinity with coronene in CH2Cl2. The interaction between coronene and the planar RhI complex is established by means of π‐stacking interactions. This interaction has a strong impact on the electron‐donating strength of the pincer CNC ligand, which is increased significantly, as demonstrated by the shifting of the ν(CO) stretching bands to lower frequencies. The addition of coronene increases the reaction rate of the nucleophilic attack of methyl iodide on the rhodium (I) pincer complex, and also has a positive effect on the performance of the complex as a catalyst in the cycloisomerization of 4‐pentynoic acid. These findings highlight the importance of supramolecular interactions for tuning the reactivity and catalytic activity of square‐planar metal complexes.
The supramolecular association of coronene and a pincer RhI complex of formula [Rh(CNC)(CO)]+ increases the electron‐donating character of the pincer ligand. This results in a strong benefit to the catalytic performance of the complex towards the cyclization of 4‐pentynoic acid. |
---|---|
ISSN: | 0044-8249 1521-3757 |
DOI: | 10.1002/ange.202307198 |