Uniqueness of hypersurfaces in weighted product spaces via maximum principles for the drift Laplacian

We apply suitable maximum principles for the drift Laplacian to obtain several uniqueness results concerning complete two-sided hypersurfaces immersed with constant f -mean curvature in a weighted product space of form R × M f n and such that its potential function f does not depend on the parameter...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bollettino della Unione matematica italiana (2008) 2023-09, Vol.16 (3), p.507-520
Hauptverfasser: da Silva, Danilo F., Lima, Eraldo A., de Lima, Henrique F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We apply suitable maximum principles for the drift Laplacian to obtain several uniqueness results concerning complete two-sided hypersurfaces immersed with constant f -mean curvature in a weighted product space of form R × M f n and such that its potential function f does not depend on the parameter t ∈ R . Among these results, we prove that the slices are the only complete two-sided f -minimal hypersurfaces lying in a half-space of R × M f n and such that the Bakry–Émeri–Ricci tensor is bounded from below. Furthermore, we study the f -mean curvature equation related to entire graphs defined on the base M n .
ISSN:1972-6724
2198-2759
DOI:10.1007/s40574-022-00337-5