On an Application of Higher Energies to Sidon Sets

We show that for any finite set A and an arbitrary ε > 0 there exists k = k ( ε ) such that the higher energy E k ( A ) is at most | A | k + ε unless A has a very specific structure. As an application we obtain that any finite subset A of the real numbers or the prime field either contains an add...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Combinatorica (Budapest. 1981) 2023-04, Vol.43 (2), p.329-345
1. Verfasser: Shkredov, I. D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We show that for any finite set A and an arbitrary ε > 0 there exists k = k ( ε ) such that the higher energy E k ( A ) is at most | A | k + ε unless A has a very specific structure. As an application we obtain that any finite subset A of the real numbers or the prime field either contains an additive Sidon-type subset of size | A | 1 / 2 + c or a multiplicative Sidon-type subset of size | A | 1 / 2 + c .
ISSN:0209-9683
1439-6912
DOI:10.1007/s00493-023-00013-y