Spatial-Temporal Pattern and Driving Forces of Fractional Vegetation Coverage in Xiong’an New Area of China from 2005 to 2019
The Xiong’an New Area was officially established in 2018 to construct a new, intelligent, and efficient urban area to alleviate Beijing’s non-capital functions. Using Landsat satellite images, we employed the dimidiate pixel model, band operation, and transition matrix to analyze the temporal and sp...
Gespeichert in:
Veröffentlicht in: | Sustainability 2023-08, Vol.15 (15), p.11985 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The Xiong’an New Area was officially established in 2018 to construct a new, intelligent, and efficient urban area to alleviate Beijing’s non-capital functions. Using Landsat satellite images, we employed the dimidiate pixel model, band operation, and transition matrix to analyze the temporal and spatial variations in FVC (Fractional Vegetation Coverage) within the Xiong’an New Area in 2005, 2013, and 2019, respectively. Urbanization rate, precipitation, temperature, and population were considered potential driving forces, which we analyzed using grey relational analysis and linear regression to explore the correlation between FVC and these factors. The findings are as follows: from 2005 to 2019, overall improvement and significant degradation have been observed. In Baiyangdian, a part of the national key ecological area, water bodies and FVC have increased. Grey relational analysis revealed that precipitation had the highest grey relational value of 0.76. The average correlation among natural factors was 0.67, while that among human factors was 0.60. Generally, the Xiong’an New Area vegetation exhibited instability, while Baiyangdian demonstrated relatively stable FVC. Grey relational analysis indicates a strong potential for social and economic development in the Xiong’an New Area. |
---|---|
ISSN: | 2071-1050 2071-1050 |
DOI: | 10.3390/su151511985 |