Sustainable Design of Circular Reinforced Concrete Column Sections via Multi-Objective Optimization
An optimization model for reinforced concrete circular columns based on the Eurocodes is presented. With the developed optimization model, which takes into account the exact distribution of the steel reinforcement, which is not the case when designing with conventional column design charts, an optim...
Gespeichert in:
Veröffentlicht in: | Sustainability 2023-08, Vol.15 (15), p.11689 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | An optimization model for reinforced concrete circular columns based on the Eurocodes is presented. With the developed optimization model, which takes into account the exact distribution of the steel reinforcement, which is not the case when designing with conventional column design charts, an optimal design for the reinforced concrete cross section is determined. The optimization model uses discrete variables, which makes the results more suitable for actual construction practice and fully exploits the structural capacity of the structure. A parametric study of the applied axial load and bending moment was performed for material cost and CO2 emissions. The results based on a single objective function show that the optimal design of the reinforced concrete column cross section obtained for the material cost objective function contains a larger cross-sectional area of concrete and a smaller area of steel compared with the optimization results when CO2 emissions are determined as the objective function. However, the optimal solution in the case where the material cost was assigned as the objective function has much more reserve in axial load capacity than in the optimal design where CO2 was chosen as the objective function. In addition, the multi-objective optimization was performed to find a set of solutions that provide the best trade-offs between the material cost and CO2 emission objectives. |
---|---|
ISSN: | 2071-1050 2071-1050 |
DOI: | 10.3390/su151511689 |