SPE-ACGAN: A Resampling Approach for Class Imbalance Problem in Network Intrusion Detection Systems

Network Intrusion Detection Systems (NIDSs) play a vital role in detecting and stopping network attacks. However, the prevalent imbalance of training samples in network traffic interferes with NIDS detection performance. This paper proposes a resampling method based on Self-Paced Ensemble and Auxili...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronics (Basel) 2023-08, Vol.12 (15), p.3323
Hauptverfasser: Yang, Hao, Xu, Jinyan, Xiao, Yongcai, Hu, Lei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Network Intrusion Detection Systems (NIDSs) play a vital role in detecting and stopping network attacks. However, the prevalent imbalance of training samples in network traffic interferes with NIDS detection performance. This paper proposes a resampling method based on Self-Paced Ensemble and Auxiliary Classifier Generative Adversarial Networks (SPE-ACGAN) to address the imbalance problem of sample classes. To deal with the class imbalance problem, SPE-ACGAN oversamples the minority class samples by ACGAN and undersamples the majority class samples by SPE. In addition, we merged the CICIDS-2017 dataset and the CICIDS-2018 dataset into a more imbalanced dataset named CICIDS-17-18 and validated the effectiveness of the proposed method using the three datasets mentioned above. SPE-ACGAN is more effective than other resampling methods in improving NIDS detection performance. In particular, SPE-ACGAN improved the F1-score of Random Forest, CNN, GoogLeNet, and CNN + WDLSTM by 5.59%, 3.75%, 3.60%, and 3.56% after resampling.
ISSN:2079-9292
2079-9292
DOI:10.3390/electronics12153323