Single‐peak solutions for a subcritical Schrödinger equation with non‐power nonlinearity
This paper deals with the following slightly subcritical Schrödinger equation: −Δu+V(x)u=fε(u),u>0inRN,$$\begin{equation*} \hspace*{80pt}-\Delta u+V(x)u=f_\varepsilon (u),\quad u>0\quad \text{in}\quad \mathbb {R}^N, \end{equation*}$$where V(x)$V(x)$ is a nonnegative smooth function, fε(u)=up[l...
Gespeichert in:
Veröffentlicht in: | Mathematische Nachrichten 2023-08, Vol.296 (8), p.3459-3480 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper deals with the following slightly subcritical Schrödinger equation:
−Δu+V(x)u=fε(u),u>0inRN,$$\begin{equation*} \hspace*{80pt}-\Delta u+V(x)u=f_\varepsilon (u),\quad u>0\quad \text{in}\quad \mathbb {R}^N, \end{equation*}$$where V(x)$V(x)$ is a nonnegative smooth function, fε(u)=up[ln(e+u)]ε$f_\varepsilon (u)=\frac{u^p}{[\ln (e+u)]^\varepsilon }$, p=N+2N−2$p=\frac{N+2}{N-2}$, ε>0$\varepsilon >0$, N≥7$N\ge 7$. Most of the previous works for the Schrödinger equations were mainly investigated for power‐type nonlinearity. In this paper, we will study the case when the nonlinearity fε(u)$f_\varepsilon (u)$ is a non‐power nonlinearity. We show that, for ε small enough, there exists a family of single‐peak solutions concentrating at the positive stable critical point of the potential V(x)$V(x)$. |
---|---|
ISSN: | 0025-584X 1522-2616 |
DOI: | 10.1002/mana.202100606 |