Single‐peak solutions for a subcritical Schrödinger equation with non‐power nonlinearity

This paper deals with the following slightly subcritical Schrödinger equation: −Δu+V(x)u=fε(u),u>0inRN,$$\begin{equation*} \hspace*{80pt}-\Delta u+V(x)u=f_\varepsilon (u),\quad u>0\quad \text{in}\quad \mathbb {R}^N, \end{equation*}$$where V(x)$V(x)$ is a nonnegative smooth function, fε(u)=up[l...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematische Nachrichten 2023-08, Vol.296 (8), p.3459-3480
Hauptverfasser: Liu, Zhongyuan, Liu, Ziying, Xu, Wenhuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper deals with the following slightly subcritical Schrödinger equation: −Δu+V(x)u=fε(u),u>0inRN,$$\begin{equation*} \hspace*{80pt}-\Delta u+V(x)u=f_\varepsilon (u),\quad u>0\quad \text{in}\quad \mathbb {R}^N, \end{equation*}$$where V(x)$V(x)$ is a nonnegative smooth function, fε(u)=up[ln(e+u)]ε$f_\varepsilon (u)=\frac{u^p}{[\ln (e+u)]^\varepsilon }$, p=N+2N−2$p=\frac{N+2}{N-2}$, ε>0$\varepsilon >0$, N≥7$N\ge 7$. Most of the previous works for the Schrödinger equations were mainly investigated for power‐type nonlinearity. In this paper, we will study the case when the nonlinearity fε(u)$f_\varepsilon (u)$ is a non‐power nonlinearity. We show that, for ε small enough, there exists a family of single‐peak solutions concentrating at the positive stable critical point of the potential V(x)$V(x)$.
ISSN:0025-584X
1522-2616
DOI:10.1002/mana.202100606