Integral Ricci curvature and the mass gap of Dirichlet Laplacians on domains
We obtain a fundamental gap estimate for classes of bounded domains with quantitative control on the boundary in a complete manifold with integral bounds on the negative part of the Ricci curvature. This extends the result of Oden, Sung, and Wang [Trans. Amer. Math. Soc. 351 (1999), no. 9, 3533–3548...
Gespeichert in:
Veröffentlicht in: | Mathematische Nachrichten 2023-08, Vol.296 (8), p.3559-3578 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3578 |
---|---|
container_issue | 8 |
container_start_page | 3559 |
container_title | Mathematische Nachrichten |
container_volume | 296 |
creator | Ramos Olivé, Xavier Rose, Christian Wang, Lili Wei, Guofang |
description | We obtain a fundamental gap estimate for classes of bounded domains with quantitative control on the boundary in a complete manifold with integral bounds on the negative part of the Ricci curvature. This extends the result of Oden, Sung, and Wang [Trans. Amer. Math. Soc. 351 (1999), no. 9, 3533–3548] to Lp$L^p$‐Ricci curvature assumptions, p>n/2$p>n/2$. To achieve our result, it is shown that the domains under consideration are John domains, what enables us to obtain an estimate on the first nonzero Neumann eigenvalue, which is of independent interest. |
doi_str_mv | 10.1002/mana.202100523 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2848464127</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2848464127</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3573-8b4748c766f2eb082f3541fe68d46757fd174f075a170b4e6b5e2b8e408bbc1c3</originalsourceid><addsrcrecordid>eNqFkMtKAzEUQIMoWKtb1wHXU5NMXl2W-iqMCqLgLiSZpE2Zl8mM0r93SkWXri4XzrkXDgCXGM0wQuS61o2eEUTGhZH8CEwwIyQjHPNjMBkBljFJ30_BWUpbhNB8LvgEFKumd-uoK_gSrA3QDvFT90N0UDcl7DcO1joluNYdbD28CTHYTeV6WOiu0jboJsG2gWVb69Ckc3DidZXcxc-cgre729flQ1Y836-WiyKzORN5Jg0VVFrBuSfOIEl8zij2jsuScsGEL7GgHgmmsUCGOm6YI0Y6iqQxFtt8Cq4Od7vYfgwu9WrbDrEZXyoiqaScYiJGanagbGxTis6rLoZax53CSO2LqX0x9VtsFOYH4StUbvcPrR4XT4s_9xuosG6h</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2848464127</pqid></control><display><type>article</type><title>Integral Ricci curvature and the mass gap of Dirichlet Laplacians on domains</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Ramos Olivé, Xavier ; Rose, Christian ; Wang, Lili ; Wei, Guofang</creator><creatorcontrib>Ramos Olivé, Xavier ; Rose, Christian ; Wang, Lili ; Wei, Guofang</creatorcontrib><description>We obtain a fundamental gap estimate for classes of bounded domains with quantitative control on the boundary in a complete manifold with integral bounds on the negative part of the Ricci curvature. This extends the result of Oden, Sung, and Wang [Trans. Amer. Math. Soc. 351 (1999), no. 9, 3533–3548] to Lp$L^p$‐Ricci curvature assumptions, p>n/2$p>n/2$. To achieve our result, it is shown that the domains under consideration are John domains, what enables us to obtain an estimate on the first nonzero Neumann eigenvalue, which is of independent interest.</description><identifier>ISSN: 0025-584X</identifier><identifier>EISSN: 1522-2616</identifier><identifier>DOI: 10.1002/mana.202100523</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Curvature ; Dirichlet problem ; eigenvalue estimate ; Eigenvalues ; integral Ricci curvature ; mass gap ; spectral gap</subject><ispartof>Mathematische Nachrichten, 2023-08, Vol.296 (8), p.3559-3578</ispartof><rights>2023 The Authors. published by Wiley‐VCH GmbH.</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3573-8b4748c766f2eb082f3541fe68d46757fd174f075a170b4e6b5e2b8e408bbc1c3</citedby><cites>FETCH-LOGICAL-c3573-8b4748c766f2eb082f3541fe68d46757fd174f075a170b4e6b5e2b8e408bbc1c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmana.202100523$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmana.202100523$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Ramos Olivé, Xavier</creatorcontrib><creatorcontrib>Rose, Christian</creatorcontrib><creatorcontrib>Wang, Lili</creatorcontrib><creatorcontrib>Wei, Guofang</creatorcontrib><title>Integral Ricci curvature and the mass gap of Dirichlet Laplacians on domains</title><title>Mathematische Nachrichten</title><description>We obtain a fundamental gap estimate for classes of bounded domains with quantitative control on the boundary in a complete manifold with integral bounds on the negative part of the Ricci curvature. This extends the result of Oden, Sung, and Wang [Trans. Amer. Math. Soc. 351 (1999), no. 9, 3533–3548] to Lp$L^p$‐Ricci curvature assumptions, p>n/2$p>n/2$. To achieve our result, it is shown that the domains under consideration are John domains, what enables us to obtain an estimate on the first nonzero Neumann eigenvalue, which is of independent interest.</description><subject>Curvature</subject><subject>Dirichlet problem</subject><subject>eigenvalue estimate</subject><subject>Eigenvalues</subject><subject>integral Ricci curvature</subject><subject>mass gap</subject><subject>spectral gap</subject><issn>0025-584X</issn><issn>1522-2616</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkMtKAzEUQIMoWKtb1wHXU5NMXl2W-iqMCqLgLiSZpE2Zl8mM0r93SkWXri4XzrkXDgCXGM0wQuS61o2eEUTGhZH8CEwwIyQjHPNjMBkBljFJ30_BWUpbhNB8LvgEFKumd-uoK_gSrA3QDvFT90N0UDcl7DcO1joluNYdbD28CTHYTeV6WOiu0jboJsG2gWVb69Ckc3DidZXcxc-cgre729flQ1Y836-WiyKzORN5Jg0VVFrBuSfOIEl8zij2jsuScsGEL7GgHgmmsUCGOm6YI0Y6iqQxFtt8Cq4Od7vYfgwu9WrbDrEZXyoiqaScYiJGanagbGxTis6rLoZax53CSO2LqX0x9VtsFOYH4StUbvcPrR4XT4s_9xuosG6h</recordid><startdate>202308</startdate><enddate>202308</enddate><creator>Ramos Olivé, Xavier</creator><creator>Rose, Christian</creator><creator>Wang, Lili</creator><creator>Wei, Guofang</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202308</creationdate><title>Integral Ricci curvature and the mass gap of Dirichlet Laplacians on domains</title><author>Ramos Olivé, Xavier ; Rose, Christian ; Wang, Lili ; Wei, Guofang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3573-8b4748c766f2eb082f3541fe68d46757fd174f075a170b4e6b5e2b8e408bbc1c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Curvature</topic><topic>Dirichlet problem</topic><topic>eigenvalue estimate</topic><topic>Eigenvalues</topic><topic>integral Ricci curvature</topic><topic>mass gap</topic><topic>spectral gap</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ramos Olivé, Xavier</creatorcontrib><creatorcontrib>Rose, Christian</creatorcontrib><creatorcontrib>Wang, Lili</creatorcontrib><creatorcontrib>Wei, Guofang</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><jtitle>Mathematische Nachrichten</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ramos Olivé, Xavier</au><au>Rose, Christian</au><au>Wang, Lili</au><au>Wei, Guofang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integral Ricci curvature and the mass gap of Dirichlet Laplacians on domains</atitle><jtitle>Mathematische Nachrichten</jtitle><date>2023-08</date><risdate>2023</risdate><volume>296</volume><issue>8</issue><spage>3559</spage><epage>3578</epage><pages>3559-3578</pages><issn>0025-584X</issn><eissn>1522-2616</eissn><abstract>We obtain a fundamental gap estimate for classes of bounded domains with quantitative control on the boundary in a complete manifold with integral bounds on the negative part of the Ricci curvature. This extends the result of Oden, Sung, and Wang [Trans. Amer. Math. Soc. 351 (1999), no. 9, 3533–3548] to Lp$L^p$‐Ricci curvature assumptions, p>n/2$p>n/2$. To achieve our result, it is shown that the domains under consideration are John domains, what enables us to obtain an estimate on the first nonzero Neumann eigenvalue, which is of independent interest.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mana.202100523</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0025-584X |
ispartof | Mathematische Nachrichten, 2023-08, Vol.296 (8), p.3559-3578 |
issn | 0025-584X 1522-2616 |
language | eng |
recordid | cdi_proquest_journals_2848464127 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Curvature Dirichlet problem eigenvalue estimate Eigenvalues integral Ricci curvature mass gap spectral gap |
title | Integral Ricci curvature and the mass gap of Dirichlet Laplacians on domains |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T06%3A20%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integral%20Ricci%20curvature%20and%20the%20mass%20gap%20of%20Dirichlet%20Laplacians%20on%20domains&rft.jtitle=Mathematische%20Nachrichten&rft.au=Ramos%20Oliv%C3%A9,%20Xavier&rft.date=2023-08&rft.volume=296&rft.issue=8&rft.spage=3559&rft.epage=3578&rft.pages=3559-3578&rft.issn=0025-584X&rft.eissn=1522-2616&rft_id=info:doi/10.1002/mana.202100523&rft_dat=%3Cproquest_cross%3E2848464127%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2848464127&rft_id=info:pmid/&rfr_iscdi=true |