Integral Ricci curvature and the mass gap of Dirichlet Laplacians on domains

We obtain a fundamental gap estimate for classes of bounded domains with quantitative control on the boundary in a complete manifold with integral bounds on the negative part of the Ricci curvature. This extends the result of Oden, Sung, and Wang [Trans. Amer. Math. Soc. 351 (1999), no. 9, 3533–3548...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematische Nachrichten 2023-08, Vol.296 (8), p.3559-3578
Hauptverfasser: Ramos Olivé, Xavier, Rose, Christian, Wang, Lili, Wei, Guofang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3578
container_issue 8
container_start_page 3559
container_title Mathematische Nachrichten
container_volume 296
creator Ramos Olivé, Xavier
Rose, Christian
Wang, Lili
Wei, Guofang
description We obtain a fundamental gap estimate for classes of bounded domains with quantitative control on the boundary in a complete manifold with integral bounds on the negative part of the Ricci curvature. This extends the result of Oden, Sung, and Wang [Trans. Amer. Math. Soc. 351 (1999), no. 9, 3533–3548] to Lp$L^p$‐Ricci curvature assumptions, p>n/2$p>n/2$. To achieve our result, it is shown that the domains under consideration are John domains, what enables us to obtain an estimate on the first nonzero Neumann eigenvalue, which is of independent interest.
doi_str_mv 10.1002/mana.202100523
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2848464127</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2848464127</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3573-8b4748c766f2eb082f3541fe68d46757fd174f075a170b4e6b5e2b8e408bbc1c3</originalsourceid><addsrcrecordid>eNqFkMtKAzEUQIMoWKtb1wHXU5NMXl2W-iqMCqLgLiSZpE2Zl8mM0r93SkWXri4XzrkXDgCXGM0wQuS61o2eEUTGhZH8CEwwIyQjHPNjMBkBljFJ30_BWUpbhNB8LvgEFKumd-uoK_gSrA3QDvFT90N0UDcl7DcO1joluNYdbD28CTHYTeV6WOiu0jboJsG2gWVb69Ckc3DidZXcxc-cgre729flQ1Y836-WiyKzORN5Jg0VVFrBuSfOIEl8zij2jsuScsGEL7GgHgmmsUCGOm6YI0Y6iqQxFtt8Cq4Od7vYfgwu9WrbDrEZXyoiqaScYiJGanagbGxTis6rLoZax53CSO2LqX0x9VtsFOYH4StUbvcPrR4XT4s_9xuosG6h</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2848464127</pqid></control><display><type>article</type><title>Integral Ricci curvature and the mass gap of Dirichlet Laplacians on domains</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Ramos Olivé, Xavier ; Rose, Christian ; Wang, Lili ; Wei, Guofang</creator><creatorcontrib>Ramos Olivé, Xavier ; Rose, Christian ; Wang, Lili ; Wei, Guofang</creatorcontrib><description>We obtain a fundamental gap estimate for classes of bounded domains with quantitative control on the boundary in a complete manifold with integral bounds on the negative part of the Ricci curvature. This extends the result of Oden, Sung, and Wang [Trans. Amer. Math. Soc. 351 (1999), no. 9, 3533–3548] to Lp$L^p$‐Ricci curvature assumptions, p&gt;n/2$p&gt;n/2$. To achieve our result, it is shown that the domains under consideration are John domains, what enables us to obtain an estimate on the first nonzero Neumann eigenvalue, which is of independent interest.</description><identifier>ISSN: 0025-584X</identifier><identifier>EISSN: 1522-2616</identifier><identifier>DOI: 10.1002/mana.202100523</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Curvature ; Dirichlet problem ; eigenvalue estimate ; Eigenvalues ; integral Ricci curvature ; mass gap ; spectral gap</subject><ispartof>Mathematische Nachrichten, 2023-08, Vol.296 (8), p.3559-3578</ispartof><rights>2023 The Authors. published by Wiley‐VCH GmbH.</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3573-8b4748c766f2eb082f3541fe68d46757fd174f075a170b4e6b5e2b8e408bbc1c3</citedby><cites>FETCH-LOGICAL-c3573-8b4748c766f2eb082f3541fe68d46757fd174f075a170b4e6b5e2b8e408bbc1c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmana.202100523$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmana.202100523$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Ramos Olivé, Xavier</creatorcontrib><creatorcontrib>Rose, Christian</creatorcontrib><creatorcontrib>Wang, Lili</creatorcontrib><creatorcontrib>Wei, Guofang</creatorcontrib><title>Integral Ricci curvature and the mass gap of Dirichlet Laplacians on domains</title><title>Mathematische Nachrichten</title><description>We obtain a fundamental gap estimate for classes of bounded domains with quantitative control on the boundary in a complete manifold with integral bounds on the negative part of the Ricci curvature. This extends the result of Oden, Sung, and Wang [Trans. Amer. Math. Soc. 351 (1999), no. 9, 3533–3548] to Lp$L^p$‐Ricci curvature assumptions, p&gt;n/2$p&gt;n/2$. To achieve our result, it is shown that the domains under consideration are John domains, what enables us to obtain an estimate on the first nonzero Neumann eigenvalue, which is of independent interest.</description><subject>Curvature</subject><subject>Dirichlet problem</subject><subject>eigenvalue estimate</subject><subject>Eigenvalues</subject><subject>integral Ricci curvature</subject><subject>mass gap</subject><subject>spectral gap</subject><issn>0025-584X</issn><issn>1522-2616</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkMtKAzEUQIMoWKtb1wHXU5NMXl2W-iqMCqLgLiSZpE2Zl8mM0r93SkWXri4XzrkXDgCXGM0wQuS61o2eEUTGhZH8CEwwIyQjHPNjMBkBljFJ30_BWUpbhNB8LvgEFKumd-uoK_gSrA3QDvFT90N0UDcl7DcO1joluNYdbD28CTHYTeV6WOiu0jboJsG2gWVb69Ckc3DidZXcxc-cgre729flQ1Y836-WiyKzORN5Jg0VVFrBuSfOIEl8zij2jsuScsGEL7GgHgmmsUCGOm6YI0Y6iqQxFtt8Cq4Od7vYfgwu9WrbDrEZXyoiqaScYiJGanagbGxTis6rLoZax53CSO2LqX0x9VtsFOYH4StUbvcPrR4XT4s_9xuosG6h</recordid><startdate>202308</startdate><enddate>202308</enddate><creator>Ramos Olivé, Xavier</creator><creator>Rose, Christian</creator><creator>Wang, Lili</creator><creator>Wei, Guofang</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202308</creationdate><title>Integral Ricci curvature and the mass gap of Dirichlet Laplacians on domains</title><author>Ramos Olivé, Xavier ; Rose, Christian ; Wang, Lili ; Wei, Guofang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3573-8b4748c766f2eb082f3541fe68d46757fd174f075a170b4e6b5e2b8e408bbc1c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Curvature</topic><topic>Dirichlet problem</topic><topic>eigenvalue estimate</topic><topic>Eigenvalues</topic><topic>integral Ricci curvature</topic><topic>mass gap</topic><topic>spectral gap</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ramos Olivé, Xavier</creatorcontrib><creatorcontrib>Rose, Christian</creatorcontrib><creatorcontrib>Wang, Lili</creatorcontrib><creatorcontrib>Wei, Guofang</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><jtitle>Mathematische Nachrichten</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ramos Olivé, Xavier</au><au>Rose, Christian</au><au>Wang, Lili</au><au>Wei, Guofang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integral Ricci curvature and the mass gap of Dirichlet Laplacians on domains</atitle><jtitle>Mathematische Nachrichten</jtitle><date>2023-08</date><risdate>2023</risdate><volume>296</volume><issue>8</issue><spage>3559</spage><epage>3578</epage><pages>3559-3578</pages><issn>0025-584X</issn><eissn>1522-2616</eissn><abstract>We obtain a fundamental gap estimate for classes of bounded domains with quantitative control on the boundary in a complete manifold with integral bounds on the negative part of the Ricci curvature. This extends the result of Oden, Sung, and Wang [Trans. Amer. Math. Soc. 351 (1999), no. 9, 3533–3548] to Lp$L^p$‐Ricci curvature assumptions, p&gt;n/2$p&gt;n/2$. To achieve our result, it is shown that the domains under consideration are John domains, what enables us to obtain an estimate on the first nonzero Neumann eigenvalue, which is of independent interest.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mana.202100523</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0025-584X
ispartof Mathematische Nachrichten, 2023-08, Vol.296 (8), p.3559-3578
issn 0025-584X
1522-2616
language eng
recordid cdi_proquest_journals_2848464127
source Wiley Online Library Journals Frontfile Complete
subjects Curvature
Dirichlet problem
eigenvalue estimate
Eigenvalues
integral Ricci curvature
mass gap
spectral gap
title Integral Ricci curvature and the mass gap of Dirichlet Laplacians on domains
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T06%3A20%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integral%20Ricci%20curvature%20and%20the%20mass%20gap%20of%20Dirichlet%20Laplacians%20on%20domains&rft.jtitle=Mathematische%20Nachrichten&rft.au=Ramos%20Oliv%C3%A9,%20Xavier&rft.date=2023-08&rft.volume=296&rft.issue=8&rft.spage=3559&rft.epage=3578&rft.pages=3559-3578&rft.issn=0025-584X&rft.eissn=1522-2616&rft_id=info:doi/10.1002/mana.202100523&rft_dat=%3Cproquest_cross%3E2848464127%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2848464127&rft_id=info:pmid/&rfr_iscdi=true