Integral Ricci curvature and the mass gap of Dirichlet Laplacians on domains

We obtain a fundamental gap estimate for classes of bounded domains with quantitative control on the boundary in a complete manifold with integral bounds on the negative part of the Ricci curvature. This extends the result of Oden, Sung, and Wang [Trans. Amer. Math. Soc. 351 (1999), no. 9, 3533–3548...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematische Nachrichten 2023-08, Vol.296 (8), p.3559-3578
Hauptverfasser: Ramos Olivé, Xavier, Rose, Christian, Wang, Lili, Wei, Guofang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We obtain a fundamental gap estimate for classes of bounded domains with quantitative control on the boundary in a complete manifold with integral bounds on the negative part of the Ricci curvature. This extends the result of Oden, Sung, and Wang [Trans. Amer. Math. Soc. 351 (1999), no. 9, 3533–3548] to Lp$L^p$‐Ricci curvature assumptions, p>n/2$p>n/2$. To achieve our result, it is shown that the domains under consideration are John domains, what enables us to obtain an estimate on the first nonzero Neumann eigenvalue, which is of independent interest.
ISSN:0025-584X
1522-2616
DOI:10.1002/mana.202100523