Galois representations of superelliptic curves
A superelliptic curve over a discrete valuation ring $\mathscr{O}$ of residual characteristic p is a curve given by an equation $\mathscr{C}\;:\; y^n=\,f(x)$ , with $\textrm{Disc}(\,f)\neq 0$ . The purpose of this article is to describe the Galois representation attached to such a curve under the hy...
Gespeichert in:
Veröffentlicht in: | Glasgow mathematical journal 2023-05, Vol.65 (2), p.356-382 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A superelliptic curve over a discrete valuation ring
$\mathscr{O}$
of residual characteristic p is a curve given by an equation
$\mathscr{C}\;:\; y^n=\,f(x)$
, with
$\textrm{Disc}(\,f)\neq 0$
. The purpose of this article is to describe the Galois representation attached to such a curve under the hypothesis that f(x) has all its roots in the fraction field of
$\mathscr{O}$
and that
$p \nmid n$
. Our results are inspired on the algorithm given in Bouw and WewersGlasg (Math. J. 59(1) (2017), 77–108.) but our description is given in terms of a cluster picture as defined in Dokchitser et al. (Algebraic curves and their applications, Contemporary Mathematics, vol. 724 (American Mathematical Society, Providence, RI, 2019), 73–135.). |
---|---|
ISSN: | 0017-0895 1469-509X |
DOI: | 10.1017/S0017089522000386 |