A characterization of potent rings
An associative ring R is called potent provided that for every $x\in R$ , there is an integer $n(x)>1$ such that $x^{n(x)}=x$ . A celebrated result of N. Jacobson is that every potent ring is commutative. In this note, we show that a ring R is potent if and only if every nonzero subring S of R co...
Gespeichert in:
Veröffentlicht in: | Glasgow mathematical journal 2023-05, Vol.65 (2), p.324-327 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | An associative ring R is called potent provided that for every
$x\in R$
, there is an integer
$n(x)>1$
such that
$x^{n(x)}=x$
. A celebrated result of N. Jacobson is that every potent ring is commutative. In this note, we show that a ring R is potent if and only if every nonzero subring S of R contains a nonzero idempotent. We use this result to give a generalization of a recent result of Anderson and Danchev for reduced rings, which in turn generalizes Jacobson’s theorem. |
---|---|
ISSN: | 0017-0895 1469-509X |
DOI: | 10.1017/S0017089522000325 |