RIP Analysis for [Formula Omitted] ([Formula Omitted]) Minimization Method

Recently, non-convex and non-linear metrics have been introduced in compressed sensing to promote sparsity. This letter proposes an extension of the previously proposed [Formula Omitted] minimization method for sparse recovery using the [Formula Omitted] minimization method with [Formula Omitted]. W...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE signal processing letters 2023-01, Vol.30, p.997
Hauptverfasser: Xie, Yujia, Su, Xinhua, Ge, Huanmin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recently, non-convex and non-linear metrics have been introduced in compressed sensing to promote sparsity. This letter proposes an extension of the previously proposed [Formula Omitted] minimization method for sparse recovery using the [Formula Omitted] minimization method with [Formula Omitted]. We establish sufficient conditions for the [Formula Omitted] minimization to recover sparse signals under the restricted isometry property (RIP). Additionally, we develop an effective algorithm to solve the [Formula Omitted] minimization problem. Experiments show the proposed method is comparable to state-of-the-art methods for sparse signal recovery.
ISSN:1070-9908
1558-2361
DOI:10.1109/LSP.2023.3298283