RIP Analysis for [Formula Omitted] ([Formula Omitted]) Minimization Method
Recently, non-convex and non-linear metrics have been introduced in compressed sensing to promote sparsity. This letter proposes an extension of the previously proposed [Formula Omitted] minimization method for sparse recovery using the [Formula Omitted] minimization method with [Formula Omitted]. W...
Gespeichert in:
Veröffentlicht in: | IEEE signal processing letters 2023-01, Vol.30, p.997 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Recently, non-convex and non-linear metrics have been introduced in compressed sensing to promote sparsity. This letter proposes an extension of the previously proposed [Formula Omitted] minimization method for sparse recovery using the [Formula Omitted] minimization method with [Formula Omitted]. We establish sufficient conditions for the [Formula Omitted] minimization to recover sparse signals under the restricted isometry property (RIP). Additionally, we develop an effective algorithm to solve the [Formula Omitted] minimization problem. Experiments show the proposed method is comparable to state-of-the-art methods for sparse signal recovery. |
---|---|
ISSN: | 1070-9908 1558-2361 |
DOI: | 10.1109/LSP.2023.3298283 |