On the probability of rumour survival among sceptics

We study a sceptical rumour model on the non-negative integer line. The model starts with two spreaders at sites 0, 1 and sceptical ignorants at all other natural numbers. Then each sceptic transmits the rumour, independently, to the individuals within a random distance on its right after s/he recei...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied probability 2023-09, Vol.60 (3), p.1096-1111
Hauptverfasser: Esmaeeli, Neda, Sajadi, Farkhondeh Alsadat
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study a sceptical rumour model on the non-negative integer line. The model starts with two spreaders at sites 0, 1 and sceptical ignorants at all other natural numbers. Then each sceptic transmits the rumour, independently, to the individuals within a random distance on its right after s/he receives the rumour from at least two different sources. We say that the process survives if the size of the set of vertices which heard the rumour in this fashion is infinite. We calculate the probability of survival exactly, and obtain some bounds for the tail distribution of the final range of the rumour among sceptics. We also prove that the rumour dies out among non-sceptics and sceptics, under the same condition.
ISSN:0021-9002
1475-6072
DOI:10.1017/jpr.2022.113