Design and Analysis of Nanosheet Field-Effect Transistor for High-Speed Switching Applications
Self-heating effects and short channel effects are unappealing side effects of multigate devices like gate-all-around nanowire-field-effect transistors (FETs) and fin FETs, limiting their performance and posing reliability difficulties. This paper proposes the use of the novel nanosheet FET (NsFET)...
Gespeichert in:
Veröffentlicht in: | Journal of nanomaterials 2023, Vol.2023, p.1-7 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Self-heating effects and short channel effects are unappealing side effects of multigate devices like gate-all-around nanowire-field-effect transistors (FETs) and fin FETs, limiting their performance and posing reliability difficulties. This paper proposes the use of the novel nanosheet FET (NsFET) for complementary metal-oxide semiconductor technology nodes that are changing. Design guidelines and basic measurements for the sub-nm node are displayed alongside a brief introduction to the roadmap to the sub-nm regime and electronic market. The device had an ION/IOFF ratio of more than 105, according to the proposed silicon-based NsFET. For low-power and high-switching applications, the results were verified and achieved quite well. When an NS width increases, although, the threshold voltage (Vth) tends to fall, resulting in a loss in subthreshold effectiveness. Furthermore, the proposed device performance, like subthreshold swing ION/IOFF, was studied with a conventional 2D FET. Hence, the proposed NsFET can be a frontrunner for ultra-low power and high-speed switching applications. |
---|---|
ISSN: | 1687-4110 1687-4129 |
DOI: | 10.1155/2023/6460617 |