Solar heat pipe ETC integrated with solar still system for water treatment and hot water production: novel hybrid experimental approach
In this manuscript, the innovative design of a hybrid system is investigated for distilled water and hot water production using the heat pipe-equipped vacuum tube collector system assimilated with solar still (HTP-ETCS-SS). The proposed hybrid system is compared with traditional solar still (SS) in...
Gespeichert in:
Veröffentlicht in: | Journal of thermal analysis and calorimetry 2023-09, Vol.148 (17), p.8969-8989 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this manuscript, the innovative design of a hybrid system is investigated for distilled water and hot water production using the heat pipe-equipped vacuum tube collector system assimilated with solar still (HTP-ETCS-SS). The proposed hybrid system is compared with traditional solar still (SS) in context of energy, exergy and financial analysis with two different depths, i.e., 40%, and 60%, and varying flow rate (4, 8, and 12 LPH). The results show a rise in distilled water productivity by 152.9%, 108%, and 51.9% with 40% depth and 162%, 152.5%, and 92.3% with 60% depth with a varying flow rate of 4, 8, and 12 LPH, respectively, in contrast to traditional solar still. The improvement in energy and exergy efficiency for distilled water output is gained between 40–22.2% and 0.7–4.1%, respectively, with the designed system. However, the system's energy and exergy efficiency lie between 64.8–42.4% and 28.4–16.4%, respectively, for both distilled water and hot water productivity. The 8 LPH flow rate is found optimum in terms of distilled productivity and hot water production. The designed system's distilled water and hot water unit costs are 0.1037$ and 0.0276$, respectively.
Graphical abstract |
---|---|
ISSN: | 1388-6150 1588-2926 |
DOI: | 10.1007/s10973-023-12281-3 |