Performance evaluation of machine learning for fault selection in power transmission lines

Learning methods have been increasingly used in power engineering to perform various tasks. In this paper, a fault selection procedure in double-circuit transmission lines employing different learning methods is accordingly proposed. In the proposed procedure, the discrete Fourier transform (DFT) is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Knowledge and information systems 2022-03, Vol.64 (3), p.859-883
Hauptverfasser: Gutierrez-Rojas, Daniel, Christou, Ioannis T., Dantas, Daniel, Narayanan, Arun, Nardelli, Pedro H. J., Yang, Yongheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Learning methods have been increasingly used in power engineering to perform various tasks. In this paper, a fault selection procedure in double-circuit transmission lines employing different learning methods is accordingly proposed. In the proposed procedure, the discrete Fourier transform (DFT) is used to pre-process raw data from the transmission line before it is fed into the learning algorithm, which will detect and classify any fault based on a training period. The performance of different machine learning algorithms is then numerically compared through simulations. The comparison indicates that an artificial neural network (ANN) achieves remarkable accuracy of 98.47%. As a drawback, the ANN method cannot provide explainable results and is also not robust against noisy measurements. Subsequently, it is demonstrated that explainable results can be obtained with high accuracy by using rule-based learners such as the recently developed quantitative association rule mining algorithm (QARMA). The QARMA algorithm outperforms other explainable schemes, while attaining an accuracy of 98%. Besides, it was shown that QARMA leads to a very high accuracy of 97% for highly noisy data. The proposed method was also validated using data from an actual transmission line fault. In summary, the proposed two-step procedure using the DFT combined with either deep learning or rule-based algorithms can accurately and successfully perform fault selection tasks but indicating remarkable advantages of the QARMA due to its explainability and robustness against noise. Those aspects are extremely important if machine learning and other data-driven methods are to be employed in critical engineering applications.
ISSN:0219-1377
0219-3116
DOI:10.1007/s10115-022-01657-w