Jordan Decomposition of Non-Hermitian Fermionic Quadratic Forms
We give a rigorous proof of Conjecture 3.1 by Prosen [Prosen T 2010 J. Stat. Mech. \(\textbf{2010}\) P07020] on the nilpotent part of the Jordan decomposition of a quadratic fermionic Liouvillian. We also show that the number of the Jordan blocks of each size can be expressed in terms of the coeffic...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-11 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We give a rigorous proof of Conjecture 3.1 by Prosen [Prosen T 2010 J. Stat. Mech. \(\textbf{2010}\) P07020] on the nilpotent part of the Jordan decomposition of a quadratic fermionic Liouvillian. We also show that the number of the Jordan blocks of each size can be expressed in terms of the coefficients of a polynomial called the \(q\)-binomial coefficient and describe the procedure to obtain the Jordan canonical form of the nilpotent part. |
---|---|
ISSN: | 2331-8422 |