On Modules Satisfying S-Noetherian Spectrum Condition
Let R be a commutative ring having nonzero identity and M be a unital R -module. Assume that S ⊆ R is a multiplicatively closed subset of R . Then, M satisfies S -Noetherian spectrum condition if for each submodule N of M , there exist s ∈ S and a finitely generated submodule F ⊆ N such that s N ⊆ r...
Gespeichert in:
Veröffentlicht in: | Communications in mathematics and statistics 2023-09, Vol.11 (3), p.649-662 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
R
be a commutative ring having nonzero identity and
M
be a unital
R
-module. Assume that
S
⊆
R
is a multiplicatively closed subset of
R
. Then,
M
satisfies
S
-Noetherian spectrum condition if for each submodule
N
of
M
, there exist
s
∈
S
and a finitely generated submodule
F
⊆
N
such that
s
N
⊆
rad
M
(
F
)
, where
rad
M
(
F
)
is the prime radical of
F
in the sense (McCasland and Moore in Commun Algebra 19(5):1327–1341, 1991). Besides giving many properties and characterizations of
S
-Noetherian spectrum condition, we prove an analogous result to Cohen’s theorem for modules satisfying
S
-Noetherian spectrum condition. Moreover, we characterize modules having Noetherian spectrum in terms of modules satisfying the
S
-Noetherian spectrum condition. |
---|---|
ISSN: | 2194-6701 2194-671X |
DOI: | 10.1007/s40304-021-00268-1 |