A nonlinear elliptic system with a transport term and singular data
In this article, we study a nonlinear system of elliptic partial differential equations describing the interaction of two species, “ u ” and “ ψ ” in a bounded domain Ω of R N for N ≥ 3 . The equation for “ ψ ” presents a production term defined by a bounded function B ( u ) and a drift term, which...
Gespeichert in:
Veröffentlicht in: | Zeitschrift für angewandte Mathematik und Physik 2023-10, Vol.74 (5), Article 176 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this article, we study a nonlinear system of elliptic partial differential equations describing the interaction of two species, “
u
” and “
ψ
” in a bounded domain
Ω
of
R
N
for
N
≥
3
. The equation for “
ψ
” presents a production term defined by a bounded function
B
(
u
) and a drift term, which depends on a known function
E
. The system is presented in the following way
model problem
u
∈
W
0
1
,
N
N
-
1
(
Ω
)
:
-
div
(
A
(
x
)
∇
u
)
+
u
=
-
div
(
u
∇
ψ
)
+
f
,
ψ
∈
W
0
1
,
2
(
Ω
)
:
-
div
(
A
(
x
)
∇
ψ
)
+
ψ
=
B
(
u
)
+
E
∇
ψ
.
where
A
:
Ω
→
R
N
2
is a symmetric matrix with bounded coefficients
a
ij
for
i
,
j
=
1
⋯
N
, and
E
:
Ω
→
R
N
belongs to
(
L
N
(
Ω
)
)
N
,
f
is assumed to be a non-negative function of
L
1
(
Ω
)
satisfying
∫
Ω
f
log
(
1
+
f
)
<
∞
and
B
is a continuous and bounded function. We obtain the existence of solutions of the model problem, moreover, for
N
=
3
, if
f
∈
L
∞
(
Ω
)
and
E
∈
L
∞
(
Ω
)
3
we have that
u
∈
W
0
1
,
2
(
Ω
)
∩
L
∞
(
Ω
)
. |
---|---|
ISSN: | 0044-2275 1420-9039 |
DOI: | 10.1007/s00033-023-02068-9 |