Elliptic curves with complex multiplication and abelian division fields

Let \(K\) be an imaginary quadratic field, and let \(\mathcal{O}_{K,f}\) be an order in \(K\) of conductor \(f\geq 1\). Let \(E\) be an elliptic curve with CM by \(\mathcal{O}_{K,f}\), such that \(E\) is defined by a model over \(\mathbb{Q}(j_{K,f})\), where \(j_{K,f}=j(E)\). In this article, we cla...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-08
Hauptverfasser: Hamakiotes, Asimina S, Lozano-Robledo, Alvaro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let \(K\) be an imaginary quadratic field, and let \(\mathcal{O}_{K,f}\) be an order in \(K\) of conductor \(f\geq 1\). Let \(E\) be an elliptic curve with CM by \(\mathcal{O}_{K,f}\), such that \(E\) is defined by a model over \(\mathbb{Q}(j_{K,f})\), where \(j_{K,f}=j(E)\). In this article, we classify the values of \(N\geq 2\) and the elliptic curves \(E\) such that (i) the division field \(\mathbb{Q}(j_{K,f},E[N])\) is an abelian extension of \(\mathbb{Q}(j_{K,f})\), and (ii) the \(N\)-division field coincides with the \(N\)-th cyclotomic extension of the base field.
ISSN:2331-8422