Improved criteria for evaluating impact targets in regulative drop tests of dangerous goods packagings

For dangerous goods packagings, drop testing onto an essential unyielding target can be used to assess the mechanical resistance to impact loads. Adopted regulations like Agreement concerning the International Carriage of Dangerous Goods by Road (ADR)/Regulation concerning the International Carriage...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Packaging technology & science 2023-09, Vol.36 (9), p.779-792
Hauptverfasser: Lengas, Nikolaos, Müller, Karsten, Schlick‐Hasper, Eva, Neitsch, Marcel, Johann, Sergej, Zehn, Manfred W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For dangerous goods packagings, drop testing onto an essential unyielding target can be used to assess the mechanical resistance to impact loads. Adopted regulations like Agreement concerning the International Carriage of Dangerous Goods by Road (ADR)/Regulation concerning the International Carriage of Dangerous Goods by Rail (RID) require that the impact surface provided shall be integral with a mass at least 50 times than that of the heaviest package to be tested. The problem is that many manufacturers do not possess impact targets that satisfy the required 50 times mass ratio for regulative drop tests during series production. The objective of this work is to verify existing and define improved criteria for impact target structures based on systematic investigations. Previous evidence highlights the relevance of other parameters in addition to the mass ratio. Therefore, in this research, a variation of drop test parameters was carried out experimentally. Furthermore, numerical vibration analysis was applied to investigate the deformability of the impact surface. The results conclude that the mass ratio of 1:50 cannot be defined as a decisive criterion. In order to determine the influence of further drop test parameters, the research findings were used to validate a parametric model that assesses impact target deflection. An approximation quality of over 90% was achieved. As a result, new evaluation criteria are proposed. First, a method for identifying critical impact target designs is provided. Second, a new comprehensive formula compares the approximated maximum deflection of a real impact target to the respective theoretical threshold derived from a worst‐case assumption. In practice, this leads to great advantages in the evaluation of already installed impact targets for dangerous goods packagings. We examined the requirement of a mass ratio of 1:50 between impact target and package in drop testing according to ADR/RID regulations. Based on experimental and numerical studies, we find that the mass ratio is important but not the only deciding factor for the impact surface to be considered essentially unyielding. We propose improved criteria that can be used instead of the 1:50 mass ratio. Thereby, additional factors are considered such as material properties, drop height, eigenfrequency, and damping ratio.
ISSN:0894-3214
1099-1522
DOI:10.1002/pts.2759