Switchable THz Guided Mode Enhancement in Subwavelength Thick PTFE - Polyimide Based Metamaterial Devices

We report an efficient approach to enhance terahertz (THz)-guided modes for realizing subwavelength thick metamaterial devices (MMD). Here, a combination of hollow and slitted rings of the vanadium dioxide ( VO_{2} )-based metasurface, having perfect impedance matching with free space, is considered...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2023, Vol.11, p.77919-77928
Hauptverfasser: Shawon, S. M. Rakibul Hasan, Kapali, Sajib, Rahman, Imi Bintey Fariha, Islam, Sharnali, Ali, Khaleda
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We report an efficient approach to enhance terahertz (THz)-guided modes for realizing subwavelength thick metamaterial devices (MMD). Here, a combination of hollow and slitted rings of the vanadium dioxide ( VO_{2} )-based metasurface, having perfect impedance matching with free space, is considered to cause tight coupling in the unit cells while reducing transverse field components of the boundary. The consolidated dielectric layer of polytetrafluoroethylene (PTFE)-polyimide underneath, maintaining a gradual change in refractive indices, brings about further improvement for a broader spectrum. Through strategic and systematic design steps, a maximum impedance bandwidth of 5.68 THz, ranging from 4.42 to 10.10 THz, has been achieved here from a structure thinner than a wavelength. Additionally, mode-independent polarization insensitivity and tunability are attained through the symmetrical unit cell pattern of temperature-dependent VO_{2} . Optimized design parameters agree with interference cancellation theory too. Validation of our presented design is performed using theoretical analysis based on equivalent circuit theory. The proposed design offers a new avenue for designing ultra-thin broadband absorbers, light modulators, etc.
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2023.3298298