Diagonals Separating the Square of a Continuum
A metric continuum X is indecomposable if it cannot be put as the union of two of its proper subcontinua. A subset R of X is said to be continuumwise connected provided that for each pair of points p , q ∈ R , there exists a subcontinuum M of X such that { p , q } ⊂ M ⊂ R . Let X 2 denote the Cartes...
Gespeichert in:
Veröffentlicht in: | Bulletin of the Malaysian Mathematical Sciences Society 2023-09, Vol.46 (5), Article 170 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A metric continuum
X
is indecomposable if it cannot be put as the union of two of its proper subcontinua. A subset
R
of
X
is said to be continuumwise connected provided that for each pair of points
p
,
q
∈
R
, there exists a subcontinuum
M
of
X
such that
{
p
,
q
}
⊂
M
⊂
R
. Let
X
2
denote the Cartesian square of
X
and
Δ
the diagonal of
X
2
. Recently, H. Katsuura asked if for a continuum
X
, distinct from the arc,
X
2
\
Δ
is continuumwise connected if and only if
X
is decomposable. In this paper, we show that no implication in this question holds. For the proof of the non-necessity, we use the dynamical properties of a suitable homeomorphism of the Cantor set onto itself to construct an appropriate indecomposable continuum
X
. |
---|---|
ISSN: | 0126-6705 2180-4206 |
DOI: | 10.1007/s40840-023-01562-7 |