Diagonals Separating the Square of a Continuum

A metric continuum X is indecomposable if it cannot be put as the union of two of its proper subcontinua. A subset R of X is said to be continuumwise connected provided that for each pair of points p , q ∈ R , there exists a subcontinuum M of X such that { p , q } ⊂ M ⊂ R . Let X 2 denote the Cartes...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin of the Malaysian Mathematical Sciences Society 2023-09, Vol.46 (5), Article 170
Hauptverfasser: Illanes, Alejandro, Martínez-de-la-Vega, Verónica, Martínez-Montejano, Jorge M., Michalik, Daria
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A metric continuum X is indecomposable if it cannot be put as the union of two of its proper subcontinua. A subset R of X is said to be continuumwise connected provided that for each pair of points p , q ∈ R , there exists a subcontinuum M of X such that { p , q } ⊂ M ⊂ R . Let X 2 denote the Cartesian square of X and Δ the diagonal of X 2 . Recently, H. Katsuura asked if for a continuum X , distinct from the arc, X 2 \ Δ is continuumwise connected if and only if X is decomposable. In this paper, we show that no implication in this question holds. For the proof of the non-necessity, we use the dynamical properties of a suitable homeomorphism of the Cantor set onto itself to construct an appropriate indecomposable continuum X .
ISSN:0126-6705
2180-4206
DOI:10.1007/s40840-023-01562-7