Ultra-Wideband RCS Reduction Achieved by a Coding Phase Gradient Metasurface
In this paper, to achieve ultra-wideband radar cross section (RCS) reduction, a coding phase gradient metasurface (CPGM) is proposed by using Pancharatnam-Berry (P-B) phase. The CPGM is composed of eight types of CPGM elements, and a series of phase gradients with different directions or starting-va...
Gespeichert in:
Veröffentlicht in: | Plasmonics (Norwell, Mass.) Mass.), 2023-08, Vol.18 (4), p.1561-1569 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, to achieve ultra-wideband radar cross section (RCS) reduction, a coding phase gradient metasurface (CPGM) is proposed by using Pancharatnam-Berry (P-B) phase. The CPGM is composed of eight types of CPGM elements, and a series of phase gradients with different directions or starting-values will be introduced in these types of CPGM elements under the same EM-wave incidence, so it can not only achieve anomalous reflection to reduce its specular RCS but also reduce the maximum bi-static RCS due to phase cancelation. The simulation results demonstrate that the CPGM has an excellent performance in RCS reduction, compared with a pure metallic plate with the same size, its specular RCS under normal incidence with arbitrary polarization can be reduced more than 10 dB in the ultra-wide frequency band of 8.8–34.8 GHz with a relative bandwidth of 119.3%, and its maximum bi-static RCS can also be reduced effectively in the ultra-wide frequency band; moreover, when the incident angle is increased to 45°, the RCS reduction can still be achieved in an ultra-wide frequency band. Finally, an effective experimental verification is carried out. |
---|---|
ISSN: | 1557-1955 1557-1963 |
DOI: | 10.1007/s11468-023-01876-z |