A Study on \(\mathcal{I}\)-localized Sequences in \(S\)-metric Spaces
In this paper, we study the notion of \(\mathcal{I}\)-localized and \(\mathcal{I}^*\)-localized sequences in \(S\)-metric spaces. Also, we investigate some properties related to \(\mathcal{I}\)-localized and \(\mathcal{I}\)-Cauchy sequences and give the idea of \(\mathcal{I}\)-barrier of a sequence...
Gespeichert in:
Veröffentlicht in: | Communications in Mathematics and Applications 2023-05, Vol.14 (1), p.49-58 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we study the notion of \(\mathcal{I}\)-localized and \(\mathcal{I}^*\)-localized sequences in \(S\)-metric spaces. Also, we investigate some properties related to \(\mathcal{I}\)-localized and \(\mathcal{I}\)-Cauchy sequences and give the idea of \(\mathcal{I}\)-barrier of a sequence in the same space. Finally, we use this idea for an \(\mathcal{I}\)-localized sequence to be \(\mathcal{I}\)-Cauchy when the ideal \(\mathcal{I}\) satisfies the condition (AP). |
---|---|
ISSN: | 0976-5905 0975-8607 |
DOI: | 10.26713/cma.v14i1.2056 |