Integrally closed m-primary ideals have extremal resolutions

We show that every integrally closed m -primary ideal I in a commutative Noetherian local ring ( R , m , k ) has maximal complexity and curvature, i.e., cx R ( I ) = cx R ( k ) and curv R ( I ) = curv R ( k ) . As a consequence, we characterize complete intersection local rings in terms of complexit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Archiv der Mathematik 2023-08, Vol.121 (2), p.123-131
Hauptverfasser: Ghosh, Dipankar, Puthenpurakal, Tony J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We show that every integrally closed m -primary ideal I in a commutative Noetherian local ring ( R , m , k ) has maximal complexity and curvature, i.e., cx R ( I ) = cx R ( k ) and curv R ( I ) = curv R ( k ) . As a consequence, we characterize complete intersection local rings in terms of complexity, curvature, and complete intersection dimension of such ideals. The analogous results on projective, injective, and Gorenstein dimensions are known. However, we provide short proofs of these results as well.
ISSN:0003-889X
1420-8938
DOI:10.1007/s00013-023-01875-w