Tailoring Extremely Narrow FWHM in Hypsochromic and Bathochromic Shift of Polycyclo‐Heteraborin MR‐TADF Materials for High‐Performance OLEDs

Developing double boron‐based emitters with extremely narrow band spectrum and high efficiency in organic light‐emitting diodes (OLEDs) is crucial and challenging. Herein, we report two materials, NO‐DBMR and Cz‐DBMR, hinge on polycyclic heteraborin skeletons based on role‐play of the highest occupi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie 2023-08, Vol.135 (32), p.n/a
Hauptverfasser: Naveen, Kenkera Rayappa, Oh, Jun Hyeog, Lee, Hyun Seung, Kwon, Jang Hyuk
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Developing double boron‐based emitters with extremely narrow band spectrum and high efficiency in organic light‐emitting diodes (OLEDs) is crucial and challenging. Herein, we report two materials, NO‐DBMR and Cz‐DBMR, hinge on polycyclic heteraborin skeletons based on role‐play of the highest occupied molecular orbital (HOMO) energy levels. The NO‐DBMR contains an oxygen atom, whereas the Cz‐DBMR has a carbazole core in the double boron‐embedded ν‐DABNA structure. The synthesized materials resulted in an unsymmetrical pattern for NO‐DBMR and surprisingly a symmetrical pattern for Cz‐DBMR. Consequently, both materials showed extremely narrow full width at half maximum (FWHM) of 14 nm in hypsochromic (pure blue) and bathochromic (Bluish green) shifted emission without losing their high color fidelity. Furthermore, both materials show high photoluminescence quantum yield (PLQY) of over 82 %, and an extremely small singlet‐triplet energy gap (ΔEST) of 0.04 eV, resulting in high reverse intersystem crossing process (kRISC) of 105 s−1. Due to the efficient thermally activated delayed fluorescence (TADF) characteristics, the fabricated OLEDs based on these heteraborins manifested maximum external quantum efficiency (EQEmax) of 33.7 and 29.8 % for NO‐DBMR and Cz‐DBMR, respectively. This is the first work reported with this type of strategy for achieving an extremely narrow emission spectrum in hypsochromic and bathochromic shifted emissions with a similar molecular skeleton. A polycyclic heteraborin multiple resonance thermally activated delayed fluorescent scaffolds (NO‐DBMR and Cz‐DBMR) based on role‐play with HOMO energy to achieve the extremely narrow FWHM of 14 nm were proposed and synthesized via lithium free one‐shot double borylation. The organic light emitting diode employing the NO‐DBMR/Cz‐DBMR manifested state‐of‐the‐art performance with high color purity and external quantum efficiency of 29.8/33.7 %.
ISSN:0044-8249
1521-3757
DOI:10.1002/ange.202306768