AUC Maximization in the Era of Big Data and AI: A Survey

Area under the ROC curve, a.k.a. AUC, is a measure of choice for assessing the performance of a classifier for imbalanced data. AUC maximization refers to a learning paradigm that learns a predictive model by directly maximizing its AUC score. It has been studied for more than two decades dating bac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACM computing surveys 2023-08, Vol.55 (8), p.1-37
Hauptverfasser: Yang, Tianbao, Ying, Yiming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Area under the ROC curve, a.k.a. AUC, is a measure of choice for assessing the performance of a classifier for imbalanced data. AUC maximization refers to a learning paradigm that learns a predictive model by directly maximizing its AUC score. It has been studied for more than two decades dating back to late 90s, and a huge amount of work has been devoted to AUC maximization since then. Recently, stochastic AUC maximization for big data and deep AUC maximization (DAM) for deep learning have received increasing attention and yielded dramatic impact for solving real-world problems. However, to the best our knowledge, there is no comprehensive survey of related works for AUC maximization. This article aims to address the gap by reviewing the literature in the past two decades. We not only give a holistic view of the literature but also present detailed explanations and comparisons of different papers from formulations to algorithms and theoretical guarantees. We also identify and discuss remaining and emerging issues for DAM and provide suggestions on topics for future work.
ISSN:0360-0300
1557-7341
DOI:10.1145/3554729