Hurwitz–Ran spaces
Given a couple of subspaces Y ⊂ X of the complex plane C satisfying some mild conditions (a “nice couple”), and given a PMQ-pair ( Q , G ) , consisting of a partially multiplicative quandle (PMQ) Q and a group G , we introduce a “Hurwitz–Ran” space Hur ( X , Y ; Q , G ) , containing configurations o...
Gespeichert in:
Veröffentlicht in: | Geometriae dedicata 2023-10, Vol.217 (5), Article 84 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Given a couple of subspaces
Y
⊂
X
of the complex plane
C
satisfying some mild conditions (a “nice couple”), and given a PMQ-pair
(
Q
,
G
)
, consisting of a partially multiplicative quandle (PMQ)
Q
and a group
G
, we introduce a “Hurwitz–Ran” space
Hur
(
X
,
Y
;
Q
,
G
)
, containing configurations of points in
X
\
Y
and in
Y
with monodromies in
Q
and in
G
, respectively. We further introduce a notion of morphisms between nice couples, and prove that Hurwitz–Ran spaces are functorial both in the nice couple and in the PMQ-group pair. For a locally finite PMQ
Q
we prove a homeomorphism between
Hur
(
(
0
,
1
)
2
;
Q
+
)
and the simplicial Hurwitz space
Hur
Δ
(
Q
)
, introduced in previous work of the author: this provides in particular
Hur
(
(
0
,
1
)
2
;
Q
+
)
with a cell stratification in the spirit of Fox–Neuwirth and Fuchs. |
---|---|
ISSN: | 0046-5755 1572-9168 |
DOI: | 10.1007/s10711-023-00820-z |