Pointwise bounds on eigenstates in non-relativistic QED

In the present paper, Kato's distributional inequality with magnetic field is generalized to vector-valued functions and operator-valued vector potentials. This result is then used in non-relativistic quantum electrodynamics (QED) to show that eigenstates of the Pauli-Fierz Hamiltonian satisfy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-06
Hauptverfasser: Griesemer, M, Kußmaul, V
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the present paper, Kato's distributional inequality with magnetic field is generalized to vector-valued functions and operator-valued vector potentials. This result is then used in non-relativistic quantum electrodynamics (QED) to show that eigenstates of the Pauli-Fierz Hamiltonian satisfy a subsolution estimate, and hence that any \(L^2\)-exponential bound in terms of a Lipschitz function implies the corresponding pointwise exponential bound. Similar pointwise bounds are also established for the one-particle density of states that are not eigenstates.
ISSN:2331-8422