Pointwise bounds on eigenstates in non-relativistic QED
In the present paper, Kato's distributional inequality with magnetic field is generalized to vector-valued functions and operator-valued vector potentials. This result is then used in non-relativistic quantum electrodynamics (QED) to show that eigenstates of the Pauli-Fierz Hamiltonian satisfy...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-06 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In the present paper, Kato's distributional inequality with magnetic field is generalized to vector-valued functions and operator-valued vector potentials. This result is then used in non-relativistic quantum electrodynamics (QED) to show that eigenstates of the Pauli-Fierz Hamiltonian satisfy a subsolution estimate, and hence that any \(L^2\)-exponential bound in terms of a Lipschitz function implies the corresponding pointwise exponential bound. Similar pointwise bounds are also established for the one-particle density of states that are not eigenstates. |
---|---|
ISSN: | 2331-8422 |