An improved error term for counting \(D_4\)-quartic fields
We prove that the number of quartic fields \(K\) with discriminant \(|\Delta_K|\leq X\) whose Galois closure is \(D_4\) equals \(CX+O(X^{5/8+\varepsilon})\), improving the error term in a well-known result of Cohen, Diaz y Diaz, and Olivier. We prove an analogous result for counting quartic dihedral...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-05 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove that the number of quartic fields \(K\) with discriminant \(|\Delta_K|\leq X\) whose Galois closure is \(D_4\) equals \(CX+O(X^{5/8+\varepsilon})\), improving the error term in a well-known result of Cohen, Diaz y Diaz, and Olivier. We prove an analogous result for counting quartic dihedral extensions over an arbitrary base field. |
---|---|
ISSN: | 2331-8422 |