An improved error term for counting \(D_4\)-quartic fields

We prove that the number of quartic fields \(K\) with discriminant \(|\Delta_K|\leq X\) whose Galois closure is \(D_4\) equals \(CX+O(X^{5/8+\varepsilon})\), improving the error term in a well-known result of Cohen, Diaz y Diaz, and Olivier. We prove an analogous result for counting quartic dihedral...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-05
Hauptverfasser: McGown, Kevin J, Tucker, Amanda
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove that the number of quartic fields \(K\) with discriminant \(|\Delta_K|\leq X\) whose Galois closure is \(D_4\) equals \(CX+O(X^{5/8+\varepsilon})\), improving the error term in a well-known result of Cohen, Diaz y Diaz, and Olivier. We prove an analogous result for counting quartic dihedral extensions over an arbitrary base field.
ISSN:2331-8422