Fourier coefficients of restrictions of eigenfunctions
Let { e j } be an orthonormal basis of Laplace eigenfunctions of a compact Riemannian manifold ( M, g ). Let H ⊂ M be a submanifold and { ψ k } be an orthonormal basis of Laplace eigenfunctions of H with the induced metric. We obtain joint asymptotics for the Fourier coefficients 〈 γ H e j , ψ k 〉 L...
Gespeichert in:
Veröffentlicht in: | Science China. Mathematics 2023-08, Vol.66 (8), p.1849-1878 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let {
e
j
} be an orthonormal basis of Laplace eigenfunctions of a compact Riemannian manifold (
M, g
). Let
H ⊂ M
be a submanifold and {
ψ
k
} be an orthonormal basis of Laplace eigenfunctions of
H
with the induced metric. We obtain joint asymptotics for the Fourier coefficients
〈
γ
H
e
j
,
ψ
k
〉
L
2
(
H
)
=
∫
H
e
j
ψ
¯
k
d
V
H
of restrictions
γh
e
j
of
e
j
to
H
. In particular, we obtain asymptotics for the sums of the norm-squares of the Fourier coefficients over the joint spectrum
{
(
μ
k
,
λ
j
)
}
j
,
k
−
0
∞
of the (square roots of the) Laplacian Δ
M
on
M
and the Laplacian Δ
H
on
H
in a family of suitably ‘thick’ regions in ℝ
2
. Thick regions include (1) the truncated cone
μ
k
/
λ
j
∈ [
a, b
] ⊂ (0, 1) and
λ
j
≼
λ
, and (2) the slowly thickening strip ∣
μ
k
−
cλ
j
∣ ≼
w
(
λ
) and
λ
j
⩼
λ
, where
w
(
λ
) is monotonic and 1 ≪
w
(
λ
) ≾
λ
1/2
. Key tools for obtaining the asymptotics include the composition calculus of Fourier integral operators and a new multidimensional Tauberian theorem. |
---|---|
ISSN: | 1674-7283 1869-1862 |
DOI: | 10.1007/s11425-021-2034-1 |